人教版中学七年级数学下册期末测试题(及答案).doc
《人教版中学七年级数学下册期末测试题(及答案).doc》由会员分享,可在线阅读,更多相关《人教版中学七年级数学下册期末测试题(及答案).doc(26页珍藏版)》请在咨信网上搜索。
人教版中学七年级数学下册期末测试题(及答案) 一、选择题 1.如图,的同位角是( ) A. B. C. D. 2.把“笑脸”进行平移,能得到的图形是( ) A. B. C. D. 3.若点在第二象限,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中假命题的是( ) A.同旁内角互补,两直线平行 B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行 C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直 5.若的两边与的两边分别平行,且,那么的度数为( ) A. B. C.或 D.或 6.下列说法中:①立方根等于本身的是,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( ) A.3 B.4 C.5 D.6 7.如图所示,长方形ABCD中,点E在CD边上,AE,BE与线段FG相交构成∠,∠,则∠1,∠2,∠,∠之间的关系是( ) A.∠1+∠2+180°=∠+∠ B.∠+∠2=∠+∠1 C.∠+∠=2(∠1+∠2) D.∠1+∠2=∠a﹣∠ 8.在平面直角坐标系中,对于点P(x,y),我们把点P’(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(a,b),则点A2021的坐标为( ) A.(a,b) B.(-b+1,a+1) C.(-a,-b+2) D.(b-1,-a+1) 九、填空题 9.4的算术平方根是_____. 十、填空题 10.已知点,点关于x轴对称,则的值是____. 十一、填空题 11.如图中,,,AD、AF分别是的角平分线和高,________. 十二、填空题 12.如图,∠B=∠C,∠A=∠D,有下列结论:①ABCD;②AEDF;③AE⊥BC;④∠AMC=∠BND.其中正确的有_____.(只填序号) 十三、填空题 13.图,直线,直线l与直线AB,CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将沿PF折叠,使顶点E落在点Q处.若∠PEF=75°,2∠CFQ=∠PFC,则________. 十四、填空题 14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=. 例如:(-3)☆2= = 2. 从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____. 十五、填空题 15.已知点A(0,0),|AB|=5,点B和点A在同一坐标轴上,那么点B的坐标是________. 十六、填空题 16.如图,一个点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,…,且每秒运动一个单位,到点用时2秒,到点用时6秒,到点用时12秒,…,那么第421秒时这个点所在位置的坐标是____. 十七、解答题 17.计算:(1);(2) 十八、解答题 18.求下列各式中的值: (1); (2). 十九、解答题 19.如图,点,分别是、上的点,,. (1)对说明理由,将下列解题过程补充完整. 解:(已知) ________(________________________) (已知) ___________(________________________) (______________________________) (2)若比大,求的度数. 二十、解答题 20.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(﹣2,2)、B(2,0),C(﹣4,﹣2). (1)在平面直角坐标系中画出△ABC; (2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′; (3)求△A′B′C′的面积. 二十一、解答题 21.已知某正数的两个不同的平方根是3a﹣14和a+2;b+11的立方根为﹣3;c是的整数部分; (1)求a+b+c的值; (2)求3a﹣b+c的平方根. 二十二、解答题 22.(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为.正方形的周长为,则______(填“”,或“”,或“”) (3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 二十三、解答题 23.已知AB//CD. (1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D; (2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F. ①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数. ②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示) 二十四、解答题 24.已知,将一副三角板中的两块直角三角板如图1放置,,,,. (1)若三角板如图1摆放时,则______,______. (2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数; (3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数. 二十五、解答题 25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数; (2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数; (3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据同位角的定义即可求出答案. 【详解】 解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即是的同位角. 故选:B. 【点睛】 本题考查同位角的定义,解题的关键是:熟练理解同位角的定义. 2.D 【分析】 根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断. 【详解】 解:观察图形可知图形进行平移,能得到图形D. 故选:D. 【点睛】 本题考查了图形的平移,图形的平移只改 解析:D 【分析】 根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断. 【详解】 解:观察图形可知图形进行平移,能得到图形D. 故选:D. 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小. 3.A 【分析】 首先根据第二象限内点的坐标符号可得到0<a<1,然后分析出1-a>0,进而可得点B所在象限. 【详解】 解:∵点A(a-1,a)在第二象限, ∴a-1<0,a>0, ∴0<a<1, ∴1-a>0, ∴点B(a,1-a)在第一象限, 故选A. 【点睛】 此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-). 4.D 【分析】 根据平行线的判定定理逐项分析即可判断. 【详解】 A. 同旁内角互补,两直线平行,是真命题,不符合题意; B. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不符合题意; C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,不符合题意; D. 在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故D选项是假命题,符合题意; 故选D 【点睛】 本题考查了真假命题的判断,掌握相关定理与性质是解题的关键. 5.A 【分析】 根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案. 【详解】 解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A, 又∵∠B=∠A+20°, ∴∠A+20°=∠A, ∵此方程无解, ∴此种情况不符合题意,舍去; 当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°; 又∵∠B=∠A+20°, ∴∠A+20°+∠A=180°, 解得:∠A=80°; 综上所述,的度数为80°, 故选:A. 【点睛】 本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案. 6.A 【分析】 根据平方根和立方根的性质,以及无理数的性质判断选项的正确性. 【详解】 解:立方根等于本身的数有:,1,0,故①正确; 平方根等于本身的数有:0,故②错误; 两个无理数的和不一定是无理数,比如和的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确; 是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确. 故选:A. 【点睛】 本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 7.A 【分析】 根据平行线的性质可得∠AFG+∠BGF=180°,再根据三角形外角的性质可得∠AFG+∠1=∠α,∠2+∠BGF=∠β,由此可得. 【详解】 解:∵在长方形中AD//BC, ∴∠AFG+∠BGF=180°, 又∵∠AFG+∠1=∠α,∠2+∠BGF=∠β, ∴. 故选:A. 【点睛】 本题考查平行线的性质,三角形外角的性质.三角形一个外角等于与它不相邻的两个内角之和,能正确识图是解题关键. 8.A 【分析】 据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:观察发现:A1(a,b),A2( 解析:A 【分析】 据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:观察发现:A1(a,b),A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),A6(-b+1,a+1)… ∴依此类推,每4个点为一个循环组依次循环, ∵2021÷4=505……1, ∴点A2021的坐标与A1的坐标相同,为(a,b), 故选:A. 【点睛】 本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点. 九、填空题 9.【详解】 试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根. 解析:【详解】 试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根. 十、填空题 10.-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直 解析:-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数. 十一、填空题 11.【分析】 根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答. 【详解】 ∵A 解析: 【分析】 根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答. 【详解】 ∵AF是的高,∴, 在中,, ∴. 又∵在中,,, ∴, 又∵AD平分, ∴, ∴ . 故答案为:. 【点睛】 本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等. 十二、填空题 12.①②④ 【分析】 根据平行线的判定与性质分析判断各项正确与否即可. 【详解】 解:∵∠B=∠C, ∴AB∥CD, ∴∠A=∠AEC, 又∵∠A=∠D, ∴∠AEC=∠D, ∴AE∥DF, ∴∠AMC 解析:①②④ 【分析】 根据平行线的判定与性质分析判断各项正确与否即可. 【详解】 解:∵∠B=∠C, ∴AB∥CD, ∴∠A=∠AEC, 又∵∠A=∠D, ∴∠AEC=∠D, ∴AE∥DF, ∴∠AMC=∠FNM, 又∵∠BND=∠FNM, ∴∠AMC=∠BND, 故①②④正确, 由条件不能得出∠AMC=90°,故③不一定正确; 故答案为:①②④. 【点睛】 本题考查了对顶角的性质及平行线的判定与性质,难度一般. 十三、填空题 13.或 【分析】 分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题. 【详解】 解:①当点Q在平行线AB,CD之间时,如图1. ∵AB//CD ∴∠PEF+ 解析:或 【分析】 分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题. 【详解】 解:①当点Q在平行线AB,CD之间时,如图1. ∵AB//CD ∴∠PEF+∠CFE=180° 设∠PFQ=x,由折叠可知∠EFP=x, ∵2∠CFQ=∠CFP, ∴∠PFQ=∠CFQ=x, ∴75°+3x=180°, ∴x=35°, ∴∠EFP=35°. ②当点Q在CD下方时,如图2 设∠PFQ=x,由折叠可知∠EFP=x, ∵2∠CFQ=∠CFP, ∴∠PFC=x, ∴75°+x+x=180°, 解得x=63°, ∴∠EFP=63°. 故答案为:或 【点睛】 本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键. 十四、填空题 14.8 【解析】 解:当a>b时,a☆b= =a,a最大为8; 当a<b时,a☆b==b,b最大为8,故答案为:8. 点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8 【解析】 解:当a>b时,a☆b= =a,a最大为8; 当a<b时,a☆b==b,b最大为8,故答案为:8. 点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 十五、填空题 15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5) 【分析】 根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案. 【详解】 解 解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5) 【分析】 根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案. 【详解】 解:∵点A(0,0),点B和点A在同一坐标轴上, ∴点B在x轴上或在y轴上, ∵|AB|=5, ∴当点B在x轴上时,点B的坐标为(5,0)或(﹣5,0), 当点B在y轴上时,点B的坐标为(0,5)或(0,﹣5); 故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5). 【点睛】 本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏. 十六、填空题 16.【分析】 由题目中所给的点运动的特点找出规律,即可解答. 【详解】 由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y) 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2, 解析: 【分析】 由题目中所给的点运动的特点找出规律,即可解答. 【详解】 由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y) 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒; 从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒; 依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…, 可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒, ∵20×20=400 ∴第421秒时这个点所在位置的坐标为(19,20), 故答案为:(19,20). 【点睛】 本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键. 十七、解答题 17.(1)0 ;(2)2 【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可; 试题解析: ①原式=2+2-4=0 解析:(1)0 ;(2) 【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可; 试题解析: ①原式=2+2-4=0 ②原式== 十八、解答题 18.(1);(2) 【分析】 (1)先移项,然后运用直接开平方法,即可求出的值; (2)方程两边同时除以8,然后计算立方根,即可得到答案. 【详解】 解:(1) ∴, ∴, ∴; (2), ∴, ∴, 解析:(1);(2) 【分析】 (1)先移项,然后运用直接开平方法,即可求出的值; (2)方程两边同时除以8,然后计算立方根,即可得到答案. 【详解】 解:(1) ∴, ∴, ∴; (2), ∴, ∴, ∴; 【点睛】 本题考查了直接开平方法、开立方根法求方程的解,解题的关键是熟练掌握直接开平方法、开立方根法进行解题. 十九、解答题 19.(1)∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;(2)70° 【分析】 (1)根据平行线的性质得出∠A=∠BFD,求出∠BFD=∠FDE,根据平行线的判定得出即可 解析:(1)∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;(2)70° 【分析】 (1)根据平行线的性质得出∠A=∠BFD,求出∠BFD=∠FDE,根据平行线的判定得出即可; (2)根据平行线的性质得出∠A+∠AED=180°,∠A=∠BFD,再求出∠AED﹣∠A=40°,即可求出答案. 【详解】 (1)证明:∵DFAC(已知), ∴∠A=∠BFD(两直线平行,同位角相等), ∵∠A=∠FDE(已知), ∴∠FDE=∠BFD(等量代换), ∴DEAB(内错角相等,两直线平行); 故答案为:∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行; (2)解:∵DFAC, ∴∠A=∠BFD, ∵∠AED比∠BFD大40°, ∴∠AED﹣∠BFD=40°, ∴∠AED﹣∠A=40°, ∴∠AED=40°+∠A, ∵DEAB, ∴∠A+∠AED=180°, ∴∠A+40°+∠A=180°, ∴∠A=70°, ∴∠BFD=70°. 【点睛】 本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 二十、解答题 20.(1)见解析;(2)见解析;(3)10 【分析】 (1)根据点A、B、C的坐标描点,从而可得到△ABC; (2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′ 解析:(1)见解析;(2)见解析;(3)10 【分析】 (1)根据点A、B、C的坐标描点,从而可得到△ABC; (2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′; (3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积. 【详解】 解:(1)如图,△ABC为所作; (2)如图,△A′B′C′为所作; (3)△A′B′C′的面积=. 【点睛】 本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 二十一、解答题 21.(1)-33;(2) 【分析】 (1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值; (2)分别将a,b,c的值代入3a-b+c,可 解析:(1)-33;(2) 【分析】 (1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值; (2)分别将a,b,c的值代入3a-b+c,可解答. 【详解】 解:(1)∵某正数的两个平方根分别是3a-14和a+2, ∴(3a-14)+(a+2)=0, ∴a=3, 又∵b+11的立方根为-3, ∴b+11=(-3)3=-27, ∴b=-38, 又∵, ∴, 又∵c是的整数部分, ∴c=2; ∴a+b+c=3+(-38)+2=-33; (2)当a=3,b=-38,c=2时, 3a-b+c=3×3-(-38)+2=49, ∴3a-b+c的平方根是±7. 【点睛】 本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义. 二十二、解答题 22.(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的 解析:(1);(2)<;(3)不能,理由见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, 设大正方形的边长为xcm, ∴ , ∴ ∴大正方形的边长为cm; (2)设圆的半径为r, ∴由题意得, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵正方形的面积为900cm2, ∴正方形的边长为30cm ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 二十三、解答题 23.(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图 解析:(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数. 【详解】 解:(1)如图1,过点作, 则有, , , , ; (2)①如图2,过点作, 有. , . . . 即, 平分,平分, ,, . 答:的度数为; ②如图3,过点作, 有. , , . . . 即, 平分,平分, ,, . 答:的度数为. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 二十四、解答题 24.(1)15°;150°;(2)67.5°;(3)30°或90°或120° 【分析】 (1)根据平行线的性质和三角板的角的度数解答即可; (2)根据平行线的性质和角平分线的定义解答即可; (3)分当B 解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120° 【分析】 (1)根据平行线的性质和三角板的角的度数解答即可; (2)根据平行线的性质和角平分线的定义解答即可; (3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可. 【详解】 解:(1)作EI∥PQ,如图, ∵PQ∥MN, 则PQ∥EI∥MN, ∴∠α=∠DEI,∠IEA=∠BAC, ∴∠DEA=∠α+∠BAC, ∴α= DEA -∠BAC=60°-45°=15°, ∵E、C、A三点共线, ∴∠β=180°-∠DFE=180°-30°=150°; 故答案为:15°;150°; (2)∵PQ∥MN, ∴∠GEF=∠CAB=45°, ∴∠FGQ=45°+30°=75°, ∵GH,FH分别平分∠FGQ和∠GFA, ∴∠FGH=37.5°,∠GFH=75°, ∴∠FHG=180°-37.5°-75°=67.5°; (3)当BC∥DE时,如图1, ∵∠D=∠C=90, ∴AC∥DF, ∴∠CAE=∠DFE=30°, ∴∠BAM+∠BAC=∠MAE+∠CAE, ∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°; 当BC∥EF时,如图2, 此时∠BAE=∠ABC=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°; 当BC∥DF时,如图3, 此时,AC∥DE,∠CAN=∠DEG=15°, ∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°. 综上所述,∠BAM的度数为30°或90°或120°. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 二十五、解答题 25.(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠ 解析:(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案; (2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案. (3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案. 【详解】 解:(1)∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB, ∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB ∴∠D+∠B=2∠E, ∴∠E=(∠D+∠B), ∵∠ADC=50°,∠ABC=40°, ∴∠AEC= ×(50°+40°)=45°; (2)延长BC交AD于点F, ∵∠BFD=∠B+∠BAD, ∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D, ∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠E+∠ECB=∠B+∠EAB, ∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD =∠B+∠BAE-(∠B+∠BAD+∠D) = (∠B-∠D), ∠ADC=α°,∠ABC=β°, 即∠AEC= (3)的值不发生变化, 理由如下: 如图,记与交于,与交于, ①, ②, ①-②得: AD平分∠BAC, 【点睛】 此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 七年 级数 下册 期末 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文