应用电化学书后习题答.doc
《应用电化学书后习题答.doc》由会员分享,可在线阅读,更多相关《应用电化学书后习题答.doc(27页珍藏版)》请在咨信网上搜索。
1、全书思考题和习题第一章习题解答:1试推导下列各电极反应的类型及电极反应的过程。(1) 解:属于简单离子电迁移反应,指电极/溶液界面的溶液一侧的氧化态物种借助于电极得到电子,生成还原态的物种而溶解于溶液中,而电极在经历氧化-还原后其物理化学性质和表面状态等并未发生变化, (2) 解:多孔气体扩散电极中的气体还原反应。气相中的气体溶解于溶液后,再扩散到电极表面,然后借助于气体扩散电极得到电子,气体扩散电极的使用提高了电极过程的电流效率。(3) 解:金属沉积反应。溶液中的金属离子从电极上得到电子还原为金属Ni,附着于电极表面,此时电极表面状态与沉积前相比发生了
2、变化。 (4) 解:表面膜的转移反应。覆盖于电极表面的物种(电极一侧)经过氧化-还原形成另一种附着于电极表面的物种,它们可能是氧化物、氢氧化物、硫酸盐等。(5);解:腐蚀反应:亦即金属的溶解反应,电极的重量不断减轻。即金属锌在碱性介质中发生溶解形成二羟基合二价锌络合物,所形成的二羟基合二价锌络合物又和羟基进一步形成四羟基合二价锌络合物。2试说明参比电极应具有的性能和用途。参比电极(reference electrode,简称RE):是指一个已知电势的接近于理想不极化的电极,参比电极上基本没有电流通过,用于测定研究电极(相对于参比电极)的电极电势。既然参比电极是理想不极化电极,它应具
3、备下列性能:应是可逆电极,其电极电势符合Nernst方程;参比电极反应应有较大的交换电流密度,流过微小的电流时电极电势能迅速恢复原状;应具有良好的电势稳定性和重现性等。不同研究体系可以选择不同的参比电极,水溶液体系中常见的参比电极有:饱和甘汞电极(SCE)、Ag/AgCl电极、标淮氢电极(SHE或NHE)等。许多有机电化学测量是在非水溶剂中进行的,尽管水溶液参比电极也可以使用,但不可避免地会给体系带入水分,影响研究效果,因此,建议最好使用非水参比体系。常用的非水参比体系为Ag/Ag+(乙腈)。工业上常应用简易参比电极,或用辅助电极兼做参比电极。在测量工作电极的电势时,参比电极内的溶液和被研究体
4、系的溶液组成往往不样,为降低或消除液接电势,常选用盐桥;为减小末补偿的溶液电阻,常使用鲁金毛细管。3试描述双电层理论的概要。解:电极/溶液界面区的最早模型是19世纪末Helmholtz提出的平板电容器模型(也称紧密层模型),他认为金属表面过剩的电荷必须被溶液相中靠近电极表面的带相反电荷的离子层所中和,两个电荷层间的距离约等于离子半径,如同一个平板电容器。这种由符号相反的两个电荷层构成的界面区的概念,便是“双电层”一词的起源。继Helmholtz之后,Gouy和Chapman在1913年不谋而合地提出了扩散双电层模型。他们考虑到界面溶液侧的离子不仅受金属上电荷的静电作用,而且受热运动的影响,因此
5、,电极表面附近溶液层中的离子浓度是沿着远离电极的方向逐渐变化的,直到最后与溶液本体呈均匀分布。该模型认为在溶液中与电极表面离子电荷相反的离子只有一部分紧密地排列在电极/溶液界面的溶液一侧(称紧密层,层间距离约为一、二个离子的厚度),另一部分离子与电极表面的距离则可以从紧密层一直分散到本体溶液中(称扩散层),在扩散层中离子的分布可用玻尔兹曼分布公式表示。Gouy-Chapman模型的缺点是忽略了离子的尺寸,把离子视为点电荷,只能说明极稀电解质溶液的实验结果。由于亥姆霍茨模型和古依查普曼模型都有不足之处,1924年,Stern吸取了Helmholtz模型和Gouy-Chapman模型的合理因素,提
6、出整个双电层是出紧密层和扩散层组成的,从而使理论更加切合实际。Stern还指出离子特性吸附的可能性,可是没有考虑它对双电层结构的影响。目前普遍公认的是在GCS模型基础上发展起来的BDM(Bockris-Davanathan-muller)模型最具有代表性,其要点如下。电极/溶液界面的双电层的溶液一侧被认为是由若干”层”组成的。最靠近电极的一层为内层,它包含有溶剂分子和所谓的特性吸附的物质(离子成分子),这种内层也称为紧密层、Helmholtz层或Stern层。4根据电极反应Red,已知:1mmolLl,10-7cms-1,03,;(1)计算交换电流密度(以表示);(2)试画出阳极电流和阴极电流
7、在600范围内的Tafel曲线()。T=298K,忽略物质传递的影响。解:(1) 196500 mol-110-7 cms-1(1 mmolLl)0.7(1 mmolLl)0.3 =196500 10-7 cm-2s-1110-69.6510-9 c cm-2s-1 9.6510-9 Acm-2=9.6510-3 Acm-2(As)也可以等于9.610-3 Acm-2。(2) 对于阴极:
8、 (1)对于阳极极: (2)电流/ Acm-2100200300400500600lgi2.0002.3012.4772.6022.6992.778阴极超电势/V-0.7914-0.8508-0.8855-0.9101-0.9292-0.9448阳极超电势/V-0.33910.36460.37940.39000.39820.40495试推导高正超电势时I关系式,并同Tafel方程比较。解:高超电势时,方程(1.43)右式两项中的一项可以忽略。当电极上发生阴极还原反应,且很大时(此时,电极电势非常负,阳极氧化反应是可
9、以忽略的),对于一定条件下在指定电极上发生的特定反应,和为一确定的值,即方程(1.47)可以简化为:。因此,在强极化的条件下,由Butler-Volmer方程可以推导出Tafel经验方程。Tafel经验方程中的a,b可以确定为:6.根据文献提供的数据,| ,在25时的,这个体系的电子传递系数为0.50,计算:(1) 的值;(2)溶液中两种络合物浓度都为1时,的交换电流密度;(3)电极面积为0.1,溶液中两种络合物浓度为时的电荷传递电阻。解:(1) 的值:(2)(3)7根据文献J AmChem. Soc. ,77,6488(1955)报道,研究电极反应:,当时,得到如下实验数据:1.
10、00.500.250.1030.017.310.10.94试计算和的值。解:由标中数据可得: (1) (2) (3)对方程(1)取对数: 得:1-0.7942,0.2058对方程(2)取对数: 得:1-0.7764,0.2236对方程(3)取对数: 得:1-0.7805,0.2195所以:=(0.2058+0.2236+0.2195)/3=0.21638. 对于一个旋转圆盘电极,应用稳态物质传递控制电极反应的处理,物质传递系数0.62,式中,为扩散系数(),为圆盘的角速度()(,为旋转频率),是动力强度,水溶液中为0.010(cm2)。使
11、用0.30 cm2的圆盘电极,在1中使0.010 还原为。已知的为5.210-6 cm2,计算因盘电极转速为10时的还原极限电流。解:0.62 =0.0252cms-19现用70Am-2的电流密度电解析出铜,假定溶液中Cu2+的活度为1,实验测得其Tafel曲线斜率为(0.06V)-1,交换电流密度j0为1Am-2,试问电解析出铜时阴极电位应为多少?解:第三章习题解答10.试写出下列电池的电极反应、成流反应以及电解液和集电器名称: (1)碱性锌锰原电池 (2)锂二氧化锰原电池 (3)锌氧化汞电池 &nb
12、sp; (4)碱性镍镉电池 (5)氢镍蓄电池 (6)氢氧燃料电池解:(1) 碱性锌锰原电池电解液,浓KOH电解质溶液.碱性圆柱形锌锰电池的钢壳为为正极的集流器,而中心的钢集流器与锌紧密接触,并连接电池底邻成为负极端。(2)锂二氧化锰原电池解:锂二氧化锰电池表达式为: (-)Li | LiClO4+PC+DME| MnO2,C(+)负极反应: 正极反应: &n
13、bsp;电池反应: 电解液是,LiClO4+PC+DME(电解质LiClO4溶解于PC和1,2-DME混合溶剂中)。电池以不锈钢外壳和石墨分别作为负极和正极的集电器。(3)锌氧化汞电池解:锌氧化汞电池的表达式为:(-)Zn|浓KOH | HgO,C(+),电池的负极反应与碱性电解液的锌锰电池相同,正极反应: 电池反应: 该电池采用浓的KOH溶液作电解液,集电器分别为Zn和石墨。(4)碱性镍镉电池解:对于碱性Ni/Cd电池的成流反应,电池放电时负极镉被氧化生成氢氧化镉;在正极上羟基氢氧化镍接受了由负极经外电路流过来的电子,被还原为氢氧化镍。集电器分别为Cd和羟基氢氧化镍
14、。电解液为相对密度为1.251.28的KOH溶液。(5)氢镍蓄电池解:氢镍电池的负极可采用混合稀土贮氢合金(如LaNiHx,x6)或钛镍合金(MHx),正极采用碱性Ni/Cd电池中Ni电极技术,并加以改进。电池表达式为:该电池以KOH溶液作为电解液。(6)氢氧燃料电池低温碱性氢上氧燃料电池。负极是用Ni粉和Pt、Pd烧结而成,或用镍的化物Ni2B制作,正极是有效面积很大的银,高浓度KOH为电解质,采用石棉或钛酸钾作隔膜。其电极反应为 负极反应:H22OH一2H2O2e 正极反应:1/2O2十H2O2e2OH &
15、nbsp; 电池反应:H21/2O2H2O电动势1.15V,工作电压0.95V,工作温度353363K,此电池已用于航天飞机上。11.下表为从电池在不同放电电流下的放电数据记录(电池质量50g) (1)绘出两放电电流下的放电曲线(E/V-Q/mAhg-1)。(2)解释为什么相同初终放电电压而不同放电电流下电池容量不尽一样?i=15mAE/V3.243.113.103.083.063.002.852.752.60t/min060120240330600660700740i=40mAE/V3.243.123.083.002.802.722.50t/min04590180
16、240270310解:(1)绘出两放电电流下的放电曲线(E/V-Q/mAhg-1)。i=15mAE/V3.243.113.103.083.063.002.852.752.60t/min060120240330600660700740Q/mAhg-100.30.61.21.6533.33.53.7i=40mAE/V3.243.123.083.002.802.722.50t/min04590180240270310Q/mAhg-100.61.22.43.23.64.1 (2) 由上图可见,放电电流的大小对电池容量有较大的影响。对于给定的电池,由于欧姆内阻和有电流通过时极化内阻的存在,电池容量和放电
17、电压随放电电流的增加而减小,电池的使用寿命也随着减小。尽管在初终放电电压相同条件下放电,但电池容量仍然随放电电流的增加而减小,电池的使用寿命也随着减小。电池放电电流的大小常用放电倍率表示,即对于一个具有额定容量C的电池,按规定的小时数放电的电流。 例如,某电池额定容量为20Ah,若以4A电流放电,则放完20Ah的额定容量需要5h,即以5h率放电,放电倍率表示为“C/5”(或“0.2C);若以0.5h率放电,对于额定容量为20Ah的电池,就是用40A的电流放电,放电倍率为“C/0.5”(或“2C”)。根据放电倍率的大小,电池可以分成低倍率(
18、0.5C)、中倍率(0.53.5C)、高倍率(3.57C)和超高倍率(7C)四类。放电倍率越大,表示放电电流越大,电池容量亦会降低较大。这就解释为什么相同初终放电电压而不同放电电流下电池容量不尽一样的原因。12.下表为碱性锌-锰电池的开路电压(OCV)和放置时间的关系,放置10个月后电池存量下降了10,(1)试汁算平均自放电速率,并绘出OCV-放置时间曲线;(2)试说明引发该电池A放电的主要原因。OCV/V1.521.441.421.401.381.361.36t/d03060120180240300解:(1)电池自放电的大小一般用单位时间内电池容量减少的百分数来表示。每天平均自放电速率=10
19、%C/300d=0.033333%C/d并绘出OCV-放置时间曲线如下图。(2)引发该电池A放电的主要原因为:锌在与碱溶液接触时的热力学不稳定性,导致锌负极在碱性电解液中的溶解及水中的H+离子还原为氢气而导致自放电。13.对于嵌入反应:电解液为1 LiClO4+PC:DME(1:1)(1)试将该反应设计成二次电池并写出相应的电极反应。(2)试根据嵌入的锂离子的量,计算电池的理论容量。(3) 试简述研究该二次电池性能的一般方法。解:(1) 成二次电池表达式为负极反应: 正极反应: 电池充放电反应为:(2) 设7722.23 Ahkg-1或7722.23 mAhg-1(3) 近年来锂离子电池的研究
20、工作重点在碳负极材料的研究上,且已经取得了新的进展。但是锂离子电池要达到大规模的应用,对于碳负极材料还需要提高锂的可逆储量和减少不可逆逆容量损失,从而有利于负极比容量的提高和电池比能量的提高。 与锂离子电池负极的发展相比,正极材料的发展稍显缓慢,主要停留在对含锂金属氧化物的研究上。原因在于尽管从理论上能脱嵌锂的物质很多,但要将共制备成能实际应用的材料却非易事,制备过程中的微小变化都可能导致样品结构和性质巨大差异,因而对现有材料的改进仍然是工作的重点。14. 对于燃料电池:(-)(Pt),CH3OH | 1H2SO4 | O2(Pt),(+)(1)试写出电极反应和电池反
21、应,并计算标准电池电动势。(2)试根据热力学知识推导其电池能量效率(100是可能的。(3)试叙述改进该燃料电池性能的方法。解:(1)负极反应: 正极反应: 电池反应:(2) 对可逆电池反应: 查热热力学数据: =-166.27;=-237.129;-394.359;=-238.66;=-285.83;-393.51*(-394.359)+2*(-237.129)-( -166.27)= -702.3471*(-393.5)+2*(-285.83)-( -238.66)= -726.5理论转换效率: 96.6754%=96.68%
22、(3): 理论计算结果表明:直接甲醇燃料电池的理论能量转换效率为96.68。尽管DMPEMFC具有无可比拟的优点,但要达到实际应用还有大量问题有待进一步解决,目前它的技术还很不成熟,仅处于研制阶段,性能最好的也只有0.1Wcm-2。而要达到实际应用,功率必须达到0.25 Wcm-2以上,同时还要使电池满足性能高,存命长和价格低三个条件。目前限制DMPEMFC实际应用的主要问题是阳极催化剂低的活性、高的价格及催化剂的毒化。因此必须提高阳极催化剂的活性,降低催化剂的用量,降低或消除催化剂的毒化。15试依据热力学数据计算碱性锌-空气电池的理论容量、电池的电动势。解:电池反应:查热热力学数据: -31
23、8.30,电动势:理论容量:819.46 Ahkg-1(注意:两者换算关系为96500库仑相当于26.8安时)16以叙述燃料电池的类型及特点。解:燃料电池可依据其工作温度、所用燃料的种类和电解质类型进行分类。按照工作温度,燃料电池可分为高、中、低温型三类。按燃料来源,燃料电池可分为直接式燃料电池(如直接学醇燃料电池),间接式燃料电池(甲醇通过重整器产生氢气,然后以氢气为燃料电池的燃料)和再生类型进行分类。现在一般都依据电解质类型来分类,可以分为五大类燃料电池,即,磷酸型燃料电池(phosphoric acid fuel cell PAFC)、熔融碳酸盐燃料电池(molten carbonate
24、 fuel cell ,MCFC)、固体氧化物燃料电池(solid oxide fuel cell,SOFC)和碱性燃料电池(alkaline fuel cell,AFC)质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC).燃料电池的第一个显著特点是不受卡诺循环的限制,能量转换效率高。由于燃料电池直接将化学能转变为电能,中间未经燃烧过程(亦即燃料电池不是一种热机),因此,不受卡诺循环的限制,可以获得更高的转化效率。燃料电池的其他优点是:低的环境污染和噪音污染,安全可靠性高;操作简单,灵活性大,建设周期短等。17请写出铅酸蓄电池的电极反应和成
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 电化学 书后 习题 答案 卢文庆编
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。