2002年广东高考数学真题及答案.doc
《2002年广东高考数学真题及答案.doc》由会员分享,可在线阅读,更多相关《2002年广东高考数学真题及答案.doc(7页珍藏版)》请在咨信网上搜索。
2002年广东高考数学真题及答案 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式>0的解集为 A.{x|x<1} B.{x|x>3} C.{x|x<1或x>3} D.{x|1<x<3} 2.若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的全面积是 A.3π B.3π C.6π D.9π 3.极坐标方程ρ2cos2θ=1所表示的曲线是 A.两条相交直线B.圆 C.椭圆 D.双曲线 4.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是 A.(0,) B.(0,] C.(,+∞) D.(0,+∞) 5.已知复数z=,则arg是 A. B. C. D. 6.函数y=2-x+1(x>0)的反函数是 A.y=log2,x∈(1,2); B.y=-log2,x∈(1,2) C.y=log2,x∈(1,2); D.y=-log2,x∈(1,2] 7.若0<α<β<,sinα+cosα=a,sinβ+cosβ=b,则 A.a>b B.a<b C.ab<1 D.ab>2 8.在正三棱柱ABC—A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为 A.60° B.90° C.45° D.120° 9.设f(x)、g(x)都是单调函数,有如下四个命题 ①若f(x)单调递增,g(x)单调递增,则f(x)-g(x)单调递增; ②若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递增; ③若f(x)单调递减,g(x)单调递增,则f(x)-g(x)单调递减; ④若f(x)单调递减,g(x)单调递减,则f(x)-g(x)单调递减其中,正确的命题是 A. ①③ B.①④ C.②③ D.②④ 10.对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是 A.(-∞,0) B.(-∞,2) C.[0,2] D.(0,2) 11.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则 A.P3>P2>P1 B.P3>P2=P1 C.P3=P2>P1 D.P3=P2=P1 12.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为 A.26 B.24 C.20 D.19 第Ⅱ卷(非选择题 共90分) 二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组共有 种可能(用数字作答). 14.双曲线的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为 . 15.设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q= . 16.圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为 . 三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分) 求函数y=(sinx+cosx)2+2cos2x的最小正周期. 18.(本小题满分12分) 已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk=2550. (Ⅰ)求a及k的值; (Ⅱ)求 19.(本小题满分12分) 如图,在底面是直角梯形的四棱锥S—ABCD中, ∠ABC=90°,SA⊥面ABCD, SA=AB=BC=1,AD=. (Ⅰ)求四棱锥S—ABCD的体积; (Ⅱ)求面SCD与面SBA所成的二面角的正切值. 20.(本小题满分12分) 设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?如果要求λ∈,那么λ为何值时,能使宣传画所用纸张面积最小? 21.(本小题满分14分) 已知椭圆的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相 交于A、B两点,点C在右准线l上,且BC∥x轴求证直线AC经过线段EF的中点. 22.(本小题满分14分) 设f(x)是定义在R上的偶函数,其图象关于直线x=1对称对任意x1,x2∈[0,],都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0. (Ⅰ)求f; (Ⅱ)证明f(x)是周期函数; (Ⅲ)记an=f(2n+),求. 参考答案 一、选择题1.C 2.A 3.D 4.A 5.B 6.A 7.B 8.B 9.C 10.B 11.D 12.D 二、填空题13.4900 14. 15.1 16.2n(n-1) 三、解答题 17.解:y=(sinx+cosx)2+2cos2x =1+sin2x+2cos2x =sin2x+cos2x+2 5分 = 8分 所以最小正周期T=π. 10分 18.解:(Ⅰ)设该等差数列为{an}, 则a1=a,a2=4,a3=3a,Sk=2550. 由已知有a+3a=2×4,解得首项a1=a=2, 公差d=a2-a1=2. 2分 代入公式Sk=k·a1+得 ∴k2+k-2550=0 解得k=50,k=-51(舍去) ∴a=2,k=50. 6分 (Ⅱ)由得Sn=n(n+1), 9分 12分 19.解:(Ⅰ)直角梯形ABCD的面积是 M底面== 2分 ∴四棱锥S—ABCD的体积是 4分 (Ⅱ)延长BA、CD相交于点E,连结SE,则SE是所求二面角的棱 6分 ∵AD∥BC,BC=2AD ∴EA=AB=SA,∴SE⊥SB ∵SA⊥面ABCD,得面SEB⊥面EBC,EB是交线. 又BC⊥EB,∴BC⊥面SEB,故SB是SC在面SEB上的射影,∴CS⊥SE, 所以∠BSC是所求二面角的平面角 10分 ∵SB= ∴tg∠BSC= 即所求二面角的正切值为 12分 20.解:设画面高为xcm,宽为λxcm,则λx2=4840 1分 设纸张面积为S,则有 S=(x+16)(λx+10)=λx2+(16λ+10)x+160, 3分 将x=代入上式得S=5000+44 5分 当8时,S取得最小值,此时,高:x=cm, 宽:λx=cm 8分 如果λ∈[],可设,则由S的表达式得 S(λ1)-S(λ2)=44 = 10分由于 因此S(λ1)-S(λ2)<0, 所以S(λ)在区间[]内单调递增. 从而,对于λ∈[],当λ=时,S(λ)取得最小值 答:画面高为88cm、宽为55cm时,所用纸张面积最小;如果要求λ∈[],当λ=时,所用纸张面积最小. 12分 21.证明:依设,得椭圆的半焦距c=1,右焦点为F(1,0),右准线方程为x=2,点E的坐标为(2,0),EF的中点为N(,0) 3分 若AB垂直于x轴,则A(1,y1),B(1,-y1),C(2,-y1), ∴AC中点为N(,0),即AC过EF中点N. 若AB不垂直于x轴,由直线AB过点F,且由BC∥x轴知点B不在x轴上,故直线AB的方程为y=k(x-1),k≠0. 记A(x1,y1)和B(x2,y2),则C(2,y2)且x1,x2满足二次方程 即(1+2k2)x2-4k2x+2(k2-1)=0, ∴x1+x2= 10分 又x21=2-2y21<2,得x1-≠0, 故直线AN,CN的斜率分别为k1= ∴k1-k2=2k· ∵(x1-1)-(x2-1)(2x1-3)=3(x1+x2)-2x1x2-4 = ∴k1-k2=0,即k1=k2,故A、C、N三点共线. 所以,直线AC经过线段EF的中点N. 14分 22.(Ⅰ)解:因为对x1,x2∈[0,],都有f(x1+x2)=f(x1)·f(x2), 所以 f(1)=a>0, 3 分 ∴ 6分 (Ⅱ)证明:依题设y=f(x)关于直线x=1对称, 故f(x)=f(1+1-x), 即f(x)=f(2-x),x∈R 又由f(x)是偶函数知f(-x)=f(x),x∈R, ∴f(-x)=f(2-x),x∈R, 将上式中-x以x代换,得f(x)=f(x+2),x∈R 这表明f(x)是R上的周期函数,且2是它的一个周期. 10分 (Ⅲ)解:由(Ⅰ)知f(x)≥0,x∈[0,1] ∵ ∴ 12分 ∵f(x)的一个周期是2∴f(2n+)=f(),因此an= 14分- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2002 广东 高考 数学 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文