1990年重庆高考文科数学真题及答案.doc
《1990年重庆高考文科数学真题及答案.doc》由会员分享,可在线阅读,更多相关《1990年重庆高考文科数学真题及答案.doc(14页珍藏版)》请在咨信网上搜索。
1990年重庆高考文科数学真题及答案 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.把所选项前的字母填在题后括号内. (2)cos275°+cos215°+cos75°cos15°的值等于 (3)如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于 (6)已知上图是函数y=2sin(ωx+ψ)(│ψ│<)的图象,那么 (7)设命题甲为:0<x<5;命题乙为:│x-2│<3.那么 (A)甲是乙的充分条件,但不是乙的必要条件. (B)甲是乙的必要条件,但不是乙的充分条件. (C)甲是乙的充要条件. (D)甲不是乙的充分条件,也不是乙的必要条件. (A){-2,4} (B){-2,0,4} (C){-2,0,2,4} (D){-4,-2,0,4} (9)如果直线y=ax+2与直线y=3x-b关于直线y=x对称,那么 (C)a=3,b=-2 (D)a=3,b=6 (10)如果抛物线y2=a(x+1)的准线方程是x=-3,那么这条抛物线的焦点坐标是 (A)(3,0) (B)(2,0) (C)(1,0) (D)(-1,0) (A)Ф (B){(2,3)} (C)(2,3) (D){(x,y)│y=x+1} (12)A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法共有 (A)60种 (B)48种 (C)36种 (D)24种 (13)已知f(x)=x5+ax3+bx-8,且f(-2)=10,那么f(2)等于 (A)-26 (B)-18 (C)-10 (D)10 (14)如图,正三棱锥S-ABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于 (A)90° (B)60° (C)45° (D)30° (15)以一个正三棱柱的顶点为顶点的四面体共有 (A)6个 (B)12个 (C)18个 (D)30个 二、填空题:把答案填在题中横线上. (17)(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中,x2的系数等于 . (19)如图,三棱柱ABC—A1B1C1中,若E、F分别为AB、AC的中点,平面EB1C1F将三棱柱分成体积为V1、V2的两部分,那么V1:V2= 三、解答题. (21)有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数 (23)如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数. (24)已知a>0,a≠1,解不等式loga(4+3x-x2)-loga(2x-1)>loga2. (25)设a≥0,在复数集C中解方程z2+2│z│=a. 参考答案 一、选择题:本题考查基本知识和基本运算. (1)A (2)C (3)D (4)B (5)D (6)C (7)A (8)B (9)A (10)C (11)B (12)D (13)A (14)C (15)B 二、填空题:本题考查基本知识和基本运算. 三、解答题. (21)本小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力. 依题意有 由②式得 d=12-2a. ③ 整理得 a2-13a+36=0. 解得 a1=4, a2=9. 代入③式得 d1=4, d2=-6. 从而得所求四个数为0,4,8,16或15,9,3,1. 解法二:设四个数依次为x,y,12-y,16-x. 依题意,有 由①式得 x=3y-12. ③ 将③式代入②式得 y(16-3y+12)=(12-y)2, 整理得 y2-13y+36=0. 解得 y1=4,y2=9. 代入③式得 x1=0,x2=15. 从而得所求四个数为0,4,8,16或15,9,3,1. (22)本小题考查三角公式以及三角函数式的恒等变形和运算能力. 解法一:由已知得 两式相除得 解法二:如图,不妨设0≤α≤β<2π,且点A的坐标是(cosα,sinα),点B的坐标是(cosβ,sinβ),则点A,B在单位圆x2+y2=1上.连结AB,若C是AB的中点,由题设知点C 连结OC,于是OC⊥AB,若设点D的坐标是(1,0),再连结OA,OB,则有 解法三:由题设得 4(sinα+sinβ)=3(cosα+cosβ). 将②式代入①式,可得 sin(α-j)=sin(j-β). 于是 α-j=(2k+1)π-(j-β)(k∈Z), 或 α-j=2kπ+(j-β)(k∈Z). 若 α-j=(2k+1)π-(j-β)(k∈Z),则α=β+(2k+1)π(k∈Z). 于是 sinα=-sinβ,即sinα+sinβ=0. 由此可知 α-j=2kπ+(j-β)(k∈Z). 即 α+β=2j+2kπ(k∈Z). (23)本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力. 解法一:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE. 又已知 SC⊥DE,BE∩DE=E, ∴ SC⊥面BDE, ∴ SC⊥BD. 又 ∵SA⊥底面ABC,BD在底面ABC上,∴SA⊥BD. 而 SC∩SA=S,∴BD⊥面SAC. ∵ DE=面SAC∩面BDE,DC=面SAC∩面BDC, ∴ BD⊥DE,BD⊥DC. ∴ ∠EDC是所求的二面角的平面角. ∵ SA⊥底面ABC,∴SA⊥AB,SA⊥AC. 又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°. 解法二:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE. 又已知 SC⊥DE,BE∩DE=E. ∴ SC⊥面BDE, ∴ SC⊥BD. 由于SA⊥底面ABC,且A是垂足,所以AC是SC在平面ABC上的射影.由三垂线定理的逆定理得BD⊥AC;又因E∈SC,AC是SC在平面ABC上的射影,所以E在平面ABC上的射影在AC上,由于D∈AC,所以DE在平面ABC上的射影在AC上,根据三垂线定理又得BD⊥DE. ∵DE面BDE,DC面BDC, ∴∠EDC是所求的二面角的平面角. 以下同解法一. (24)本小题考查对数,不等式的基本知识及运算能力. 解:原不等式可化为 loga(4+3x-x2)>loga2(2x-1). ① 当0<a<1时,①式等价于 即当0<a<1时,原不等式的解集是{x│2<x<4}. 当a>1时,①式等价于 (25)本小题考查复数与解方程等基本知识以及综合分析能力. 解法一:设z=x+yi,代入原方程得 于是原方程等价于方程组 由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数或为纯虚数.下面分别加以讨论. 情形1. 若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a. ③ (Ⅰ)令x>0,方程③变为x2+2x=a. ④ 由此可知:当a=0时,方程④无正根; (Ⅱ)令x<0,方程③变为x2-2x=a. ⑤ 由此可知:当a=0时,方程⑤无负根; (Ⅲ)令x=0,方程③变为0=a. ⑥ 由此可知:当a=0时,方程⑥有零解x=0; 当a>0时,方程⑥无零解. 所以,原方程的实数解是: 当a=0时,z=0; 情形2. 若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a. ⑦ (Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a. ⑧ 由此可知:当a>1时,方程⑧无实根. 从而, 当a=0时,方程⑧有正根 y=2; (Ⅱ)令y<0,方程⑦变为-y2-2y=a,即(y+1)2=1-a. ⑨ 由此可知:当a>1时,方程⑨无实根. 从而, 当a=0时,方程⑨有负根 y=-2; 所以,原方程的纯虚数解是: 当a=0时,z=±2i; 而当a>1时,原方程无纯虚数解. 解法二:设z=x+yi,代入原方程得 于是原方程等价于方程组 由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论. 情形1. 若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a. 情形2. 若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a. 当a=0时,因y≠0,解方程④得│y│=2, 即当a=0时,原方程的纯虚数解是z=±2i. 即当0<a≤1时,原方程的纯虚数解是 当a>1时,方程④无实根,所以这时原方程无纯虚数解. 解法三:因为z2=-2│z│+a是实数,所以若原方程有解,则其解或为实数,或为纯虚数,即z=x或z=yi(y≠0). 情形1. 若z=x.以下同解法一或解法二中的情形1. 情形2. 若z=yi(y≠0).以下同解法一或解法二中的情形2. 解法四:设z=r(cosθ+isinθ),其中r≥0,0≤θ<2π.代入原方程得 r2cos2θ+2r+ir2sin2θ=a. 于是原方程等价于方程组 情形1. 若r=0.①式变成 0=a. ③ 由此可知:当a=0时,r=0是方程③的解. 当a>0时,方程③无解. 所以, 当a=0时,原方程有解z=0; 当a>0时,原方程无零解. (Ⅰ)当k=0,2时,对应的复数是z=±r.因cos2θ=1,故①式化为 r2+2r=a. ④ 由此可知:当a=0时,方程④无正根; (Ⅱ)当k=1,3时,对应的复数是z=±ri.因cos2θ=-1,故①式化为 -r2+2r=a,即(r-1)2=1-a, ⑤ 由此可知:当a>1时,方程⑤无实根,从而无正根; 从而, 当a=0时,方程⑤有正根 r=2; 所以, 当a=o时,原方程有解z=±2i; 当0<a≤1时,原方程有解 当a>1时,原方程无纯虚数解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1990 重庆 高考 文科 数学 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文