2006年福建高考理科数学真题及答案.doc
《2006年福建高考理科数学真题及答案.doc》由会员分享,可在线阅读,更多相关《2006年福建高考理科数学真题及答案.doc(10页珍藏版)》请在咨信网上搜索。
2006年福建高考理科数学真题及答案 第Ⅰ卷(选择题 共60分) 一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设a、b、c、d∈R,则复数(a+bi)(c+di)为实数的充要条件是 A.ad-bc=0 B.ac-bd=0 C. ac+bd=0 D.ad+bc=0 (2)在等差数列{a}中,已知a=2,a+a=13,则a+a+a等于 A.40 B.42 C.43 D.45 (3)已知∈(,),sin=,则tan()等于 A. B.7 C.- D.-7 (4)已知全集U=R,且A={x︱︱x-1︱>2},B={x︱x-6x+8<0},则(A)∩等于 A.[-1,4] B. (2,3) C. (2,3) D.(-1,4) (5)已知正方体外接球的体积是,那么正方体的棱长等于 A.2 B. C. D. (6)在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于 A. B. C. D. (7)对于平面和共面的直线m、n,下列命题中真命题是 A.若m⊥,m⊥n,则n∥ B.若m∥,n∥,则m∥n C.若m,n∥,则m∥n D.若m、n与所成的角相等,则n∥m (8)函数y=㏒(x﹥1)的反函数是 A.y= (x>0) B.y= (x<0) C.y= (x>0) D. .y= (x<0) (9)已知函数f(x)=2sinx(>0)在区间[,]上的最小值是-2,则的最小值等于 A. B. C.2 D.3 (10)已知双曲线(a>0,b<0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 A.( 1,2) B. (1,2) C.[2,+∞] D.(2,+∞) (11)已知︱︱=1,︱︱=,=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m、n∈R),则等于 A. B.3 C. D. (12)对于直角坐标平面内的任意两点A(x,y)、B(x,y),定义它们之间的一种“距离”:‖AB‖=︱x-x︱+︱y-y︱. 给出下列三个命题: ①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖; ②在△ABC中,若∠C=90°,则‖AC‖+‖CB‖=‖AB‖; ③在△ABC中,‖AC‖+‖CB‖>‖AB‖. 其中真命题的个数为 A.0 B.1 C.2 D.3 第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x-)展开式中x的系数是 (用数字作答) (14)已知直线x-y-1=0与抛物线y=ax相切,则a= (15)一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是 (16)如图,连结△ABC的各边中点得到一个新的△A1B1C1,又连结的△A1B1C1各边中点得到,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…,这一系列三角形趋向于一个点M,已知A(0,0) ,B(3,0),C(2,2),则点M的坐标是 . 二、 解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分12分) 已知函数f(x)=sin2x+xcosx+2cos2x,xR. (I)求函数f(x)的最小正周期和单调增区间; (Ⅱ)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到? (18)(本小题满分12分) 如图,四面体ABCD中,O、E分别BD、BC的中点,CA=CB=CD=BD=2 (Ⅰ)求证:AO⊥平面BCD; (Ⅱ)求异面直线AB与CD所成角的大小; (Ⅲ)求点E到平面的距离. (19)(本小题满分12分) 统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=(0<x≤120).已知甲、乙两地相距100千米。 (Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? (20)(本小题满分12分) 已知椭圆的左焦点为F,O为坐标原点。 (Ⅰ)求过点O、F,并且与椭圆的左准线l相切的圆的方程; (Ⅱ)设过点F且不与坐标轴垂直交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围. (21)(本小题满分12分) 已知函数f(x)=-x+8x,g(x)=6lnx+m (Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t); (Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。 (22)(本小题满分14分) 已知数列{a}满足a=1,a=2a+1(n∈N) (Ⅰ)求数列{a}的通项公式; (Ⅱ)若数列{bn}满足4k1-14k2-1…4k-1=(an+1)km(n∈N*),证明:{bn}是等差数列; (Ⅲ)证明:(n∈N*). 2006年福建高考理科数学真题参考答案 一、选择题:本大题考查基本概念和基本运算,每小题5分,满分60分. (1)D (2)B (3)A (4)C (5)D (6)A (7)C (8)A (9)B (10)C (11)B (12)B 二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分. (13)10 (14) (15) (16)() 三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)本小题主要考查三角函数的基本公式,三角恒等变换、三角函数的图象和性质等基本识,以及推理和运算能力,满分12分. 解:(1)f(x)= = =sin(2x+. ∴f(x)的最小正周期T==π. 由题意得2kπ-≤2x+,k∈Z, ∴f(x)的单调增区间为[kπ-],k∈Z. (2)方法一: 先把y=sin 2x图象上所有的点向左平移个单位长度,得到y=sin(2x+)的图象,再把所得图象上所有的点向上平移个单位年度,就得到y=sin(2x+)+的图象. 方法二: 把y=sin 2x图象上所有的点按向量a=(-)平移,就得到y=sin(2x+)+的图象. (18)本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分. 方法一: (1)证明:连结OC. ∵BO=DO,AB=AD, ∴AO⊥BD. ∵BO=DO,BC=CD, ∴CO⊥BD. 在△AOC中,由已知可得AO=1,CO=. 而AC=2, ∴AO2+CO2=AC2, ∴∠AOC=90°,即AO⊥OC. ∴AB平面BCD. (Ⅱ)解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知ME∥AB,OE∥DC. ∴直线OE与EM所成的锐角就是异面直线AB与CD所成的角. 在△OME中, 是直角△AOC斜边AC上的中线,∴ ∴ ∴异面直线AB与CD所成角的大小为 (Ⅲ)解:设点E到平面ACD的距离为h. , ∴·S△ACD =·AO·S△CDE. 在△ACD中,CA=CD=2,AD=, ∴S△ACD= 而AO=1, S△CDE= ∴h= ∴点E到平面ACD的距离为. 方法二: (Ⅰ)同方法一: (Ⅱ)解:以O为原点,如图建立空间直角坐标系,则B(1,0,0),D(-1,0,0), C(0,,0),A(0,0,1),E(,,0), ∴ ∴异面直线AB与CD所成角的大小为 (Ⅲ)解:设平面ACD的法向量为n=(x,y,z),则 ∴ 令y=1,得n=(-)是平面ACD的一个法向量. 又 ∴点E到平面ACD的距离 h= (19)本小题主要考查函数,导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力.满分12分. 解: (1)当x=40时,汽车从甲地到乙地行驶了小时, 要耗油(. 答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升. (2)当速度为x千米/小时,汽车从甲地到乙地行驶了设耗油量为h(x)升,衣题意得 h(x)=()·, h’(x)=(0<x≤120= 令h’(x)=0,得x=80. 当x∈(0,80)时,h’(x)<0,h(x)是减函数; 当x∈(80,120)时,h’(x)>0,h(x)是增函数. ∴当x=80时,h(x)取到极小值h(80)=11.25. 因为h(x)在(0,120)上只有一个极值,所以它是最小值. 答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升. (20)本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法, 考查运算能力和综合能力.满分12分. 解(1) ∵a2=2,b2=1,∴c=1,F(-1,0),l:x=-2. ∵圆过点O、F. ∴圆心M在直线x=- 设M(-),则圆半径 r=|(-)-(-2)|=. 由|OM|=r,得 解得t=±, ∴所求圆的方程为(x+)2+(y±) 2=. (2)设直线AB的方程为y=k(x+1)(k≠0), 代入+y2=1,整理得(1+2k2)x2+4k2x+2k2-2=0. ∵直线AB过椭圆的左焦点F, ∴方程有两个不等实根. 记A(x1,y1),B(x2,y2),AB中点N(x0,y0), 则x1+x1=- x0= AB垂直平分线NG的方程为 令y=0,得 ∵ ∴点G横坐标的取值范围为()。 (21)本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程、数形结合、分类与整合等数学思想方法和分析问题、解决问题的能力。满分12分。 解:(I)f(x)=-x2+8x=-(x-4)2+16, 当t+1<4,即t<3时,f(x)在[t,t+1]上单调递增, h(t)=f(t+1)=-(t+1)2+8(t+1)=-t2+6t+7; 当t≤4≤t+1时,即3≤t≤4时,h(t)=f(4)=16; 当t>4时,f(x)在[t,t+1]上单调递减, h(t)=f(x)=-t2+8t . t<3, 3≤t≤4, t>4 综上,h(t)= (II)函数y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点,即函数 j(x)=g(x)-f(x)的图象与x轴的正半轴有且只有三个不同的交点。 ∴j(x)=x2-8x+16ln x+m, ∵j′(x)=2x-8+ 当x∈(0,1)时,j′(x)>0,j(x)是增函数; 当x∈(1,3)时,j′(x)<0,j(x)是减函数; 当x∈(3,+∞)时,j′(x)>0,j(x)是增函数; 当x=1,或x=3时, j′(x)=0; ∴j(x)极大值=j(1)=m-7, j(x)极小值=j(3)=m+6ln 3-15. ∵当x充分接近0时,j(x)<0,当x充分大时,j(x)>0. ∴要使j(x)的图象与x轴正半轴有三个不同的交点,必须且只须 既7<m<-6ln 3. 所以存在实数m,使得函数y=f(x)与y=g(x)的图象有且只有三个不同的交点,m的取值范围为(7,15—6ln 3). (22)本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。满分14分。 (I)解:∵an+1=2 an+1(n∈N), ∴an+1+1=2(an+1), ∴| an+1| 是以a1+1=2为首项,2为公比的等比数列。 ∴an+1=2n, 既an=2n-1(n∈N)。 (II)证法一:∵4b1-14 b2-2…4 bn-1=(a+1)bn, ∵4k1+k2+…+kn =2nk, ∴2[(b1+b2+…+bn)-n]=nb, ① 2[(b1+b2+…+bn+1)-(n+1)]=(n+1)bn+1 ② ②-①,得2(bn+1-1)=(n+1)bn+1-nb, 即 (n-1)bn+1-nbn+2=0. ③ nbn+2=(n+1)bn+1+2=0. ④ ④-③,得nbn+2-2nbn+1-nbn=0, 即 bn+2-2bn+1+b=0, ∴bn-2-bn+1=bn(n∈N*), ∴{bn}是等差数列. 证法二:同证法一,得 (n-1)bn+1=nbn+2=0 令n=1,得b1=2. 设b2=2+d(d∈R),,下面用数学归纳法证明 bn=2+(n-1)d. (1)当n=1,得b1=2. (2)假设当n=k(k≥2)时,b1=2+(k-1)d,那么 bk+1= 这就是说,当n=k+1时,等式也成立. 根据(1)和(2),可知bn=2(n-1)d对任何n∈N*都成立. ∵bn+1-bn=d, ∴{bn}是等差数列. (3)证明:∵ ∴ ∵≥(),k=1,2,…,n,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2006 福建 高考 理科 数学 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文