信息纳米技术及其应用CH4纳米复合材料.pptx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息 纳米技术 及其 应用 CH4 纳米 复合材料
- 资源描述:
-
CH4 纳米复合材料 纳米复合材料纳米复合材料(NANOCOMPOSITES):两种或两种以上的吉布斯固相至少在一个方向以纳米级大小复合而成的材料。在复合材料中,一种相为连续相,称基体;另一种相为分散相,分散相以一种独立的相态分布在连续相中,两相间有相界。1.纳米复合材料的分类2.纳米复合材料的制备方法3.几种典型的纳米复合材料:纳米复合涂层,高强度、高延展性合金,增韧纳米复相陶瓷,超塑性陶瓷材料,高分子基复合材料,纳米磁性复合材料,新型发光材料,高材料。4.1纳米复合材料的分类纳米颗粒-零维纳米材料 纳米纤维-一维纳米材料 纳米薄膜-二维纳米材料 纳米固体-三维纳米材料0-0复合:不同种类的纳米粒子复合。如:金属-金属复合、金属-陶瓷复合、金属-高分子复合、陶瓷-陶瓷复合、陶瓷-高分子复合。0-2复合,纳米粒子分散在薄膜材料中,形成均匀分散或非均匀分散的颗粒膜。0-3复合,纳米粒子分散在常规三维固体中。如:金属纳米粒子分散到另一种金属或合金中;纳米陶瓷(氧化物)分散到常规金属或高分子中。2-2复合,如:多层膜。按固相成分可分为:按固相成分可分为:无机纳米复合;有机/无机纳米复合;聚合物/聚合物纳米复合。更广义的复合材料:更广义的复合材料:不同物质构成的纳米多层膜以及介孔复合体材料纳米复合材料与普通复合材料的区别有机-无机纳米复合材料区别于通常的聚合物/无机填料体系:无机和有机相在纳米范围结合而成,两相界面存在较强的作用力,得到许多特异性能的新材料。4.2 纳米复合材料制备方法1.Sol-Gel法2.CVD(Chemical Vapor Deposition)法3.Sputtering4.纳米粒子直接分散法5.插层复合法6.高能球磨法(1)Sol-Gel(1)Sol-Gel法制备纳米复合材料法制备纳米复合材料可制备纳米氧化物、纳米半导体材料、无机纳米复合材料,还可制备纳米有机-无机纳米复合材料。优点:均匀性好、纯度高、烧结温度比传统的固相法低。例如:FeCl36H2O和Ti(OC3H7)8制-Fe2O3/TiO2纳米材料。先制得干凝胶,1200热处理 Fe2O3/TiO2纳米材料。制备有机-无机纳米复合材料:在有机物存在下形成无机相。选择合适的共溶剂是关键。例如:聚丙烯腈在有机酸作共溶剂条件下可溶于硅酸乙酯的水溶液中,在合适条件下硅酸乙酯水解缩合制得含有机聚合物的凝胶,室温下缓慢干燥,得到了有机聚合物均匀包埋在三维二氧化硅网络中的透明性很好的复合材料。(2)CVD法制备纳米复合材料制备过程:制备过程:CVD气相反应沉积热处理。如:如:SiCl4-C3H8-H2系统,Si/C比为0-2.8,沉积温度1400-2000K,制得SiC-C纳米复合材料。(3)Sputtering制备纳米复合材料如:如:RF磁控溅射制备InxGa1-xAs/SiO2纳米材料(3-5nm),(0.2x0.8)。(4)(4)纳米粒子直接分散法制备纳米复合材料纳米粒子直接分散法制备纳米复合材料优点:优点:纳米粒子与材料的合成分步进行,可控制纳米粒子的形态、尺寸。在分散前一般对纳米粒子进行表面处理,以保证体系分散均匀。如:无机氧化物-聚吡咯复合材料的制备。将纳米氧化物分散于聚合物中,制成有发光特性的聚合物-半导体材料。氧化物有:SiO2,SnO2等。(4)(4)纳米粒子直接分散法制备纳米复合材料纳米粒子直接分散法制备纳米复合材料分散方法分散方法:溶液共混:基体树脂溶解于溶剂,加入纳米粒子搅拌均匀除去溶剂或有机载体聚集制得复合体系。如:将CdS纳米粒子用溶液共混法嵌入聚合物中制成具有发光特性的聚合物-半导体纳米材料。机械共混:树脂+溶剂+纳米粒子三辊研磨纳米材料。(5)(5)插层复合法插层复合法利用层状无机物(硅酸盐粘土)做作为主体,将有机高聚物作为客体插如主体的层间,从而制得有机/无机纳米复合材料。层状无机物结构特点层状无机物结构特点:呈层状,每层结构紧密,但层间有空隙,每层厚度和层间距离都在纳米级。常用的层状无机物如常用的层状无机物如:蒙脱土蒙脱土,属2:1型层状硅酸盐,每层的一个单位晶胞由两个Si-O四面体中间夹带一个Al-O八面体构成,每层厚度约1nm,层间距离为几nm-十几nm。插层复合法插层复合法 按插入的方法,有机/无机插层型纳米复合材料分为:单体插入-原位聚合,有机高聚物溶液直接插入,有机高聚物熔融直接插入。按复合材料的结构,可分为:层间插入型和层状分散型复合材料。(6)(6)高能球磨法制备纳米复合材料高能球磨法制备纳米复合材料制备金属-金属、金属-陶瓷、陶瓷-陶瓷纳米复合材料。原材料:超细粉(0.3um Al2O3,0.1um MgO,0.3um SiC,0.3um Si3N4混合(乙醇介质中球磨)烧结(30MPa,N2)纳米陶瓷复合材料:1800,Al2O3/Si3N41600-1800,Al2O3/SiC1700-1800,MgO/SiC4.3 几种典型的纳米复合材料(1)(1)纳米复合涂层纳米复合涂层如:磁控溅射法在碳钢表面涂上复合涂层MoSi2/SiC,经500/1h热处理后,涂层硬度可达到20.8GPa,比碳钢提高几十倍,且有良好的抗氧化和耐高温等性能,克服了单层纳米MoSi2容易开裂的缺点。又如:钢表面纳米TiN/C复合涂层 激光蒸发法在钢表面附上一层纳米TiN,再用CVD法将纳米金刚石纳米粒子沉积在TiN涂层上,再涂上一层TiN,纳米粒子在第二层TiN中形成了纳米复合涂层。该涂层具有高硬度、耐热冲击,且与钢基体有极强的附着力。典型的纳米复合材料(2)(2)高强度、高延展性合金高强度、高延展性合金如:如:纳米Al粒子-过渡金属-La化合物合金 纳米Al粒子(3-10nm)分布在非晶基体中,具有高强度(1340-1560MPa)和高延展性。其结构特点是:非晶基体上分布纳米粒子。非晶基体上分布着纳米Al粒子。另,Cu与氧化物的复合材料 高能球磨法制备的Cu-纳米MgO,和Cu-纳米CaO复合材料,导电性与Cu一样,但强度大大提高了。结构特点:纳米粒子均匀分散在Cu基体中。(3)(3)增韧纳米复相陶瓷增韧纳米复相陶瓷 纳米技术有望解决陶瓷的脆性问题。如:如:纳米SiC-SiC粗粉复合材料 20nm的SiC为基体,添加入10%粗-SiC粉(约10u),在低于1700,350MPa的热等静压条件下,合成纳米结构的SiC块体,该材料的强度没有降低,但断裂韧性比纳米SiC块体提高10-25%。又如:又如:堇青石-纳米ZrO2复合材料 Sol-Gel法制备的堇青石(2MgO2Al2O35SiO2)与纳米ZrO2复合材料,其断裂韧性比堇青石提高了1倍。典型的纳米复合材料典型的纳米复合材料(4)(4)超塑性陶瓷材料超塑性陶瓷材料如:在ZrO2(Y2O3)(粒径小于300nm)中观察到了超塑性,超塑性竟达到800%;在此基础上,加入20%Al2O3,陶瓷材料平均粒径约500nm,超塑性为200-500%。在Si3N4+20%SiC细晶粒复合陶瓷中,观察到在1600 下,延伸率达150%。细晶Al2O3的超塑性也引起了极大兴趣,做了很多尝试。(5)(5)高分子基复合材料高分子基复合材料高硬度材料高硬度材料:微米级Fe、Cu粉按一定比例混合后,经高能球磨制备出纳米Fex/Cu1-x合金粉,这种合金粉与环氧树脂极高硬度的类金刚石刀片高耐磨材料:高耐磨材料:纳米Al2O3 与橡胶复合,耐磨性大大提高,介电常数提高了将近1倍。纳米ZnO作轮胎添加剂,已批量投产,节约用量,提高轮胎性能。静电屏蔽材料:静电屏蔽材料:半导体粉(TiO2,Cr2O3,Fe2O3,ZnO等)加入树脂树脂基纳米氧化物复合材料,其屏蔽性优于常规树脂基与碳黑的复合材料;根据纳米氧化物的类型来改变复合材料的颜色,在电器外壳涂料方面有广阔应用前景。防晒化妆品:防晒化妆品:TiO2与有机物复合,利用TiO2对紫外线的吸收特性。纳米ZnO与树脂基复合也有防紫外线特性。典型的纳米复合材料典型的纳米复合材料(6)(6)纳米磁性复合材料纳米磁性复合材料巨磁阻材料:巨磁阻材料:颗粒膜:基质材料中弥散着纳米磁性粒子。Ag-Fe,Ag-Co纳米丝:如Co/Cu,电沉积法在聚碳酸酯孔洞沉积Co,在其表面电镀Cu膜,重复多次。室温下巨磁阻效应R/R达15-20%多层膜:Fe/Cr纳米复合永磁材料(纳米复合永磁材料(Nanocrystalline Composite Permanent Magnetic Nanocrystalline Composite Permanent Magnetic Materials)Materials):是一种新型的永磁材料,其磁化原理是交换耦合硬磁化:两种不同的磁性材料,当他们彼此接触,或被足够薄的薄层(6nm)分隔,允许自旋信息在两者间传递,使它们的磁矩有一个优先的特殊取向。一般,一种材料为软磁性,另一种为硬磁性,交换耦合显示为软磁材料的磁滞回线沿它的磁场轴旋转,使软磁相的磁矩与硬磁相的磁矩相平行。当有外场时,软磁相的磁矩随硬磁相的磁矩同步转动,对外呈单一磁行为。特征:特征:1.1.剩余磁化强度高;2.磁能积高;3.剩磁对温度的依赖性小;4.良好的磁化特性。如:如:Nd2Fe14B(硬磁相)/-Fe(软磁相)纳米晶复合永磁材料 熔体快淬法制得纳米晶薄带而获得。Nd7Fe90B3快淬带经650,300S退火,合金由Nd2Fe14B及-Fe和少量的非晶相组成。复合材料的磁性能为:Br=1.3T,Hc=2.6105A/m,(BH)m=1.46105J/m3.(7)(7)新型发光材料新型发光材料 纳米氧化物复合纳米氧化物复合 纯纳米Al2O3、纯纳米Fe2O3在可见光范围不发光。纳米Al2O3+纳米Fe2O3蓝绿光致发光带,原因:复合材料的界面中有大量的Fe3+,界面中过渡族离子在弱晶场下形成杂质能级。又如:又如:纳米Al2O3+纳米Cr2O3复合材料中观察到Cr3+诱导的发光带,波长范围:650-750nm。Si:H(2-4nm)/Si3N4(6nm)复合多层膜(60-100层),经激光处理在可见光范围内发出荧光,可制作电光元件。典型的纳米复合材料(7)(7)新型发光材料新型发光材料金属纳米颗粒金属纳米颗粒/介质复合发光膜介质复合发光膜 一种新型的发光膜。将Ag粒子分散在BaO介质中形成Ag-BaO纳米复合功能膜。在紫外光(323.5nm)照射下有两个发光主峰:729nm和 460-560nm.复合膜的光热稳定性好、高吸收系数、超快响应时间等。如:纳米与半导体介质膜的响应时间50fs,比一般半导体薄膜的响应时间快3个数量级。可用于制作超高速光电器件。(7)(7)新型发光材料新型发光材料铁电铁电-金属、铁电金属、铁电-半导体复合发光材料:半导体复合发光材料:将金属或半导体纳米粒子分散在铁电材料中。铁电材料为纳米相提供了一种特殊的物理环境,铁电体具有高介电常数和介电场强,由此构成高介-高场调制的纳米态系统。铁电环境对纳米粒子的影响铁电环境对纳米粒子的影响:高介电常数环境影响纳米相界面附近的电场,从而影响纳米粒子的电子结构和能带特征;高介基体使纳米颗粒的界面态发生很大变化,使界面的性质发生变化;高介基体在外场作用下,内部能形成很强电场,纳米相会受到高电场作用。铁电铁电-金属复合材料中发现新现象:金属复合材料中发现新现象:复合材料的超高介电常数、铁电材料介电常数对金属微粒吸收光谱的调制作用等。铁电铁电-金属、铁电金属、铁电-半导体复合发光材料半导体复合发光材料例:例:BaTiO3/CdS系统在紫外光(365nm)激发下,发光谱有两个峰:465nm,与胶体的发光带相近;550-650nm,来自于量子点的界面态。BaTiO3/CdS复合材料还可用于超低驱动电压下的“高场”电致发光。典型的纳米复合材料(8)(8)高高材料材料用Sol-Gel技术制备Ag/SiO2 纳米复合材料(纳米Ag分布在SiO2基体中),1kHz时,5000,比常规SiO2提高1个数量级。另:纳米Ag分散到玻璃或陶瓷中,复合材料的可达500,和tan性能都优于常规材料。展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




信息纳米技术及其应用CH4纳米复合材料.pptx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4827491.html