人教版高中数学必修2、选修2-1知识点.doc
《人教版高中数学必修2、选修2-1知识点.doc》由会员分享,可在线阅读,更多相关《人教版高中数学必修2、选修2-1知识点.doc(9页珍藏版)》请在咨信网上搜索。
必 修 2知识点 第一章 空间几何体 1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图 1 画三视图的原则: 长对齐、高对齐、宽相等 2直观图:斜二测画法. 步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变; (3).画法要写好。 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1 棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积 4 圆台的表面积 5 球的表面积 (二)空间几何体的体积 1柱体的体积 2锥体的体积 3台体的体积 4球体的体积 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 符号表示为L A · α A∈L B∈L => L α A∈α C · B · A · α B∈α 公理1作用:判断直线是否在平面内. (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A、B、C三点不共线 => 有且只有一个平面α,使A∈α、B∈α、C∈α。 公理2作用:确定一个平面的依据。 P · α L β (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P∈α∩β =>α∩β=L,且P∈L 公理3作用:判定两个平面是否相交的依据. 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 共面直线 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 4 注意点:① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ]; ③ 当两条异面直线所成的角是直角时,就说这两条异面直线互相垂直,记作a⊥b; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 a α a∩α=A a∥α 2.2.1 直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号表示: a α b α => a∥α a∥b 2.2.2 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。 符号表示: a β b β a∩b = P β∥α a∥α b∥α 2、判断两平面平行的方法有三种: (1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。 2.2.3 — 2.2.4直线与平面、平面与平面平行的性质 1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。 符号表示:a ∥α a β a∥b α∩β= b 2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。 符号表示:α∥β α∩γ= a a∥b β∩γ= b 2.3.1直线与平面垂直的判定 1、定义:直线L与平面α内的任意一条直线垂直,就说直线L与平面α垂直,记作L⊥α. 2、线面垂直判定定理:一条直线与平面内的两条相交直线都垂直,则该直线与此平面垂直。 2.3.2平面与平面垂直的判定 1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 A 梭 l β B α 2、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质 1、直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行。 2、两个平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 说明:1.证线面平行、面面平行关键是证明线线平行,证明线线平行常用方法有:三角形中位线定理、平行四边形的性质定理、梯形中位线定理、平行线分线段成比例定理的推论。. 直线与直线平行直线与平面平行平面与平面平 2.证明线面垂直、面面垂直的关键是证明线线垂直,证明线线垂直常用的方法有:等腰三角形三线合一的性质、勾股定理的逆定理等. 直线与直线垂直直线与平面垂直平面与平面垂直 第三章 直线与方程 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。即。 当直线l与x轴平行或重合时, α=0°, k = tan0°=0; 当直线l与x轴垂直时, α= 90°, k 不存在. 注意: 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 当时,; 当时,; 当时,不存在。 ②过两点P1 (x1,y1), P2 (x2,y2),x1≠x2的直线斜率公式: 注意:当时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (3)直线方程 ①点斜式:直线斜率k,且过点 ②斜截式:,直线斜率为k,直线在y轴上的截距为b ③两点式:()直线两点, ④截矩式:,其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。 (其中) ⑤一般式:(A,B不全为0) 注意:各式的适用范围 特殊的方程如: 倾斜角0°,k=0,此时为平行于x轴的直线:(b为常数); 倾斜角 90°时,直线的斜率不存在,它的方程不能用点斜式表示. 此时为平行于y轴的直线:(a为常数); (4)两直线平行与垂直 :当,时, ; 斜率互为负倒数 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (5)两条直线的交点 相交 交点坐标即方程组的一组解。 方程组无解 ; 方程组有无数解与重合 (6)两点间距离公式:设,则 (7)点到直线距离公式:点到直线的距离 (8)两平行直线距离公式 两平行线为:,:,则与的距离注意点:x,y对应项系数应相等。 (9)平行直线与垂直直线设法: 1、圆定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆半径。 2、圆的方程 (1)标准方程,圆心,半径为r; 特殊地,当时,圆心在原点的圆的方程为:。 点与圆的位置关系如何判断? (2)一般方程 当时,方程表示圆,此时圆心为,半径为 当时,表示一个点; 当时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。 需三个独立条件,若用圆的标准方程,需求出a,b,r;若用一般方程,需要求出D,E,F; 另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。 3、直线与圆的位置关系(用圆心到直线的距离来判断): 直线,圆,圆心到l的距离 , ; ; 。 还可利用直线方程与圆的方程联立方程组求解,通过解的个数来判断。 注:(1)过圆外一点的切线:①k不存在,验证是否成立 ②k存在,设点斜式方程,用圆心到直线距离=半径,求k,得方程 (2)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 设圆, 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 当时两圆外离,此时有公切线四条; 当时两圆外切,连心线过切点,公切线三条; 当时两圆相交,连心线垂直平分公共弦,有两条公切线; 当时,两圆内切,连心线经过切点,只有一条公切线; 当时,两圆内含,无公切线; 当时,为同心圆。 判断两个圆的位置关系也可以通过联立方程组判断公共解的个数来解决。 注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线; 圆的辅助线一般为连圆心与切线或者连圆心与弦中点。 5、中点坐标公式 6、两圆相交则连心线垂直平分相交弦 7、线圆相交,计算弦长,常用勾股定理:弦长一半、半径、弦心距。 8、光线反射问题:入射点的“像”在反射光线的反向延长线上,反射点的“像”在入反射光线的反向延长线上 4.3.1空间直角坐标系 1、点M对应有序实数组,、、分别是P、Q、R在、、轴上的坐标 2、有序实数组,对应着空间直角坐标系中的一点 3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M,叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标。 4.3.2空间两点间的距离公式 1、空间中任意一点到点之间的距离公式 选修2-1 第一章:命题与逻辑结构 1、 2.真假性之间的关系:两个命题互为逆否命题,它们有相同的真假性; 两个命题为互逆命题或互否命题,它们的真假性没有关系. 3、若,则是的充分条件,是的必要条件. 若,则是的充要条件(充分必要条件). 4、(1)当、都是真命题时,是真命题;有一个是假命题时,是假命题. (2)当、有一个是真命题时,是真命题;两个都是假命题时,是假命题. (3)对一个命题全盘否定,得到一个新命题,记作. 若是真命题,则必是假命题;若是假命题,则必是真命题. 5、(1)全称命题“对中任意一个,有成立”,记作“,”. 全称命题:,,它的否定:,。是特称命题。 (2)特称命题“存在中的一个,使成立”,记作“,”. 特称命题:,,它的否定:,。是全称命题。 第二章:圆锥曲线 1、求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化 ①建立适当的直角坐标系;②设动点及其他的点;③找出满足限制条件的等式;④将点的坐标代入等式;⑤化简方程,并验证(查漏除杂)。 2、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆。 3、椭圆的几何性质: 焦点的位置 焦点在轴上 焦点在轴上 图形 标准方程 范围 且 且 顶点 、 、 、 、 轴长 短轴的长 长轴的长 焦点 、 、 焦距 ,a最大 对称性 7、月球的明亮部分,上半月朝西,下半月朝东。关于轴、轴对称,关于原点中心对称 2、在加热的过程中,蜡烛发生了什么变化?(P29)离心率 4、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线。 5、双曲线的几何性质: 焦点的位置 焦点在轴上 19、阳光、空气、水、土壤、岩石、植物、动物……构成了我们周围的环境。我们人类也是环境中的一部分,我们都生活在一不定的环境之中。人与自然和谐相处,共同发展,是我们共同的责任。焦点在轴上 答:这个垃圾场不仅要能填埋垃圾,而且要能防止周围环境和地下水的污染。图形 5、月球在圆缺变化过程中出现的各种形状叫作月相。月相变化是由于月球公转而发生的。它其实是人们从地球上看到的月球被太阳照亮的部分。 标准方程 3、我们在水中发现了什么微生物呢?(P18) 范围 或, 6、你还知道哪些环境问题?它们都对地球造成了哪些影响?或, 顶点 、 、 轴长 虚轴的长 实轴的长 1、人们把放大镜叫作凸透镜(边沿薄、中间厚、透明),它能把物体的图像放大,早在一千多年前,人们就发明了放大镜。放大镜在我们的生活、工作、学习中被广泛使用。焦点 、 、 焦距 ,c最大 对称性 关于轴、轴对称,关于原点中心对称 离心率 渐近线方程 6、实轴和虚轴等长的双曲线称为等轴双曲线。离心率?渐近线? 7、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线. 8、过焦点作垂直于对称轴且交抛物线于、两点的线段,称为 “通径”,即. 9、抛物线的几何性质: 标准方程 图形 顶点 对称轴 轴 轴 焦点 准线方程 离心率 范围 焦半径 第三章:空间向量 1、空间向量的概念:2、空间向量的加法和减法: 向量的加法,它遵循三角形法和平行四边形法则. 向量的减法,它遵循三角形法则. 3、向量的数乘运算.当时,与方向相同;当时,与方向相反; 当时,为零向量,记为. 的长度是的长度的倍. 4、,为实数,,是向量,则分配律:;结合律:. 5、有向线段所在直线互相平行或重合,则这些向量称为共线向量或平行向量。零向量与任何向量都共线. 6、向量共线充要条件:对向量,,的充要条件是存在实数,使. 7、平行于同一个平面的向量称为共面向量. 8、向量共面定理:点在平面内的充要条件是存在实数,,使; 或对空间任一定点,有; 或若四点,,,共面,则. 9、向量,的夹角(起点相同),记作.两个向量夹角的取值范围是:. 10、,的数量积,.零向量与任何向量的数量积为. 11、等于的长度与在的方向上的投影的乘积. 12、若,为非零向量,为单位向量,则有; ;,,; ;. 13运算律;;. 14、空间向量基本定理:若三个向量,,不共面,则对空间任一向量,存在实数组,使得. 称为空间的一个基底,空间任意三个不共面的向量都可以构成空间的一个基底. 15、设,,则. . . . 若、为非零向量,则. 若,则. . . ,,则. 16、若空间不重合两条直线,的方向向量分别为,, 则, . 17、若直线的方向向量为,平面的法向量为,且, 则, . 18、若空间不重合的两个平面,的法向量分别为,, 则, . 19、用向量法求线线角、线面角、面面角公式;点面距离公式。(略)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 必修 选修 知识点
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文