2012年浙江省高考数学【理】(含解析版).doc
《2012年浙江省高考数学【理】(含解析版).doc》由会员分享,可在线阅读,更多相关《2012年浙江省高考数学【理】(含解析版).doc(6页珍藏版)》请在咨信网上搜索。
2012浙江省高考数学(理科)试卷word版(含答案) 2012年普通高等学校招生全国统一考试 数 学(理科) 选择题部分(共50分) 一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一个项是符合题目要求的。 1.设集合,集合,则 A. B. C. D. 2.已知是虚数单位,则 A. B. C. D. 3.设,则“”是“直线:与直线:平行”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.把函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是 5.设,是两个非零向量 A.若,则 B.若,则 C.若,则存在实数,使得 D.若存在实数,使得,则 6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 A.60种 B.63种 C.65种 D.66种 7.设是公差为()的无穷等差数列的前项和,则下列命题错误的是 A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 8.如图,,分别是双曲线:的 左、右两焦点,是虚轴的端点,直线与的两条渐近 线分别交于,两点,线段的垂直平分线与轴交于点 .若,则的离心率是 A. B. C. D. 9.设, A.若,则 B.若,则 C.若,则 D.若,则 10.已知矩形,,.将沿矩形的对角线所在的直线进行翻折,在翻折过程中, A.存在某个位置,使得直线与直线垂直 B.存在某个位置,使得直线与直线垂直 C.存在某个位置,使得直线与直线垂直 D.对任意位置,三对直线“与”,“与”,“与”均不垂直 非选择题部分(共100分) 二、填空题:本大题共7小题,每小题4分,共28分。 11.已知某三棱锥的三视图(单位:)如图所示,则该三棱锥 的体积等于 . 12.若某程序框图如图所示,则该程序运行后输出的值是 . 13.设公比为的等比数列的前项和为. 若,,则 . 14.若将函数表示为 , 其中,,,…,为实数,则 . 15.在中,是的中点,,, 则 . 16.定义:曲线上的点到直线的距离的最小值称为曲线到直线 的距离.已知曲线:到直线:的距离等于曲线 :到直线:的距离,则实数 . 17.设,若时均有, 则 . 三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。 18.(本题满分14分)在中,内角,,的对边分别为,,.已知,. (Ⅰ)求的值; (Ⅱ)若,求的面积. 19.(本题满分14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从箱中任取(无放回,且每球取道的机会均等)3个球,记随机变量为取出此3球所得分数之和. (Ⅰ)求的分布列; (Ⅱ)求的数学期望. 20.(本题满分15分)如图,在四棱锥中,底面是 边长为的菱形,,且平面, ,,分别为,的中点. (Ⅰ)证明:平面; (Ⅱ)过点作,垂足为点,求二面角 的平面角的余弦值. 21.(本题满分15分)如图,椭圆:的 离心率为,其左焦点到点的距离为,不过原点的 直线与相交于,两点,且线段被直线平分. (Ⅰ)求椭圆的方程; (Ⅱ)求面积取最大值时直线的方程. 22.(本题满分14分)已知,,函数. (Ⅰ)证明:当时, (i)函数的最大值为; (ii); (Ⅱ)若对恒成立,求的取值范围. 数学(理科)试题参考答案 一、选择题:本题考察基本知识和基本运算。每小题5分,满分50分。 1.B 2.D 3.A 4.A 5.C 6.D 7.C 8.B 9.A 10.B 二、填空题:本题考察基本知识和基本运算。每小题4分,满分28分。 11.1 12. 13. 14.10 15.-16 16. 17. 三、解答题:本题共小题,满分72分。 18.本题主要考查三角恒等变换、正弦定理等知识,同时考查运算求解能力。满分14分。 (Ⅰ)因为,,得 又 所以 (Ⅱ)由,得 ,, 于是 . 由及正弦定理,得 . 设的面积为,则 . 19.本题主要考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算求解能力和应用意识。满分14分。 (Ⅰ)由题意得取3,4,5,6,且 , , , . 所以的分布列为 3 4 5 6 (Ⅱ)由(Ⅰ)知 . 20.本题主要考察空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想像能力和运算求解能力。满分15分。 (Ⅰ)因为,分别是,的中点,所以是的中位线,所以 又因为平面,所以 平面. (Ⅱ)方法一: 连结交于,以为原点,,所在直线为,轴,建立空间直角坐标系,如图所示 在菱形中,,得 ,. 又因为平面,所以 . 在直角中,,,,得 ,. 由此知各点坐标如下, ,, ,, ,, ,. 设为平面的法向量. 由,知 取,得 设为平面的法向量. 由,知 取,得 于是 . 所以二面角的平面角的余弦值为. 方法二: 在菱形中,,得 ,, 有因为平面,所以 ,,, 所以. 所以. 而,分别是,的中点,所以 ,且. 取线段的中点,连结,,则 ,, 所以为二面角的平面角. 由,,故 在中,,,得 . 在直角中,,得 ,,, 在中,,得 . 在等腰中,,,得 . 在中,,,,得 . 所以二面角的平面角的余弦值为. 21.本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解体能力。满分15分。 (Ⅰ)设椭圆左焦点为,则由题意得 , 得 所以椭圆方程为 . (Ⅱ)设,,线段的中点为. 当直线与轴垂直时,直线的方程为,与不过原点的条件不符,舍去.故可设直线的方程为 , 由消去,整理得 , (1) 则 , 所以线段的中点, 因为在直线上,所以 , 得 (舍去)或, 此时方程(1)为,则 , 所以 , 设点到直线距离为,则 , 设的面积为,则 , 其中, 令, , 所以当且仅当,取到最大值, 故当且仅当,取到最大值. 综上,所求直线方程为. 22.本题主要考查利用导函数研究函数的性质、线性规划等基础知识,同时考查推理论证能力,分类讨论等综合解题能力和创新意识。满分14分。 (Ⅰ)(i) 当时,有,此时在上单调递增 所以当时, (ii)由于,故 当时, 当时, 设,则 , 于是 0 1 - 0 + 1 减 极小值 增 1 所以,, 所以 当时, 故 (Ⅱ)由(i)知,当,,所以 若,则由(ii)知 所以对任意恒成立的充要条件是 , 即,或(1) 在直角坐标系中,(1)所表示的平面区域为如图所示的阴影部分,其中不包括线段, 作一组平行直线,得 . 所以的取值范围是.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2012年浙江省高考数学【理】含解析版 2012 浙江省 高考 数学 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文