2012年湖南高考理科数学试题及答案.doc
《2012年湖南高考理科数学试题及答案.doc》由会员分享,可在线阅读,更多相关《2012年湖南高考理科数学试题及答案.doc(23页珍藏版)》请在咨信网上搜索。
2012年普通高等学校招生全国统一考试(湖南卷) 数学(理科) 一、选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设集合,,则 A. B. C. D. 2.命题“若,则”的逆否命题是 A.若,则 B.若,则 C.若,则 D.若,则 3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是 A B C D 4.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为,则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心 C.若该大学某女生身高增加1cm,则其体重约增加kg D.若该大学某女生身高为170cm,则可断定其体重比为kg 5.已知双曲线的焦距为10 ,点在C的渐近线上,则C的方程为 A. B. C. D. 6.函数的值域为 A. B. C. D. 7.在中,,,,则 A. B. C. D. 8.已知两条直线和,与函数的图像从左至右相交于点,与函数的图像从左至右相交于点.记线段AC和BD在轴上的投影长度分别为.当m变化时,的最小值为 A. B. C. D. 二、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡中对应题号后的横线上. (一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分) 9. 在直角坐标系xOy中,已知曲线(t为参数)与曲线(为参数,)有一个公共点在轴上,则 . 10.不等式的解集为 . 11.如图2,过点的直线与⊙相交于两点.若, ,,则⊙的半径等于 . (二)必做题(12~16题) 12.已知复数(为虚数单位),则 . 13.的二项展开式中的常数项为 .(用数字作答) 14.如果执行如图3所示的程序框图,输入,则输出的数 . 15.函数的导函数的部分图象如图4所示,其中,为图象与轴的交点,为图象与轴的两个交点,为图象的最低点. (1)若,点的坐标为,则 ; (2)若在曲线段与轴所围成的区域内随机取一点,则该点在内的概率为 . 16.设,将个数依次放入编号为的个位置,得到排列.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列,将此操作称为变换.将分成两段,每段个数,并对每段作变换,得到;当时,将分成段,每段个数,并对每段作变换,得到.例如,当时,,此时位于中的第4个位置. (1)当时,位于中的第 个位置; (2)当时,位于中的第 个位置. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示. 已知这100位顾客中的一次购物量超过8件的顾客占55%. (Ⅰ)确定的值,并求顾客一次购物的结算时间的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过分钟的概率.(注:将频率视为概率) 18.(本小题满分12分) 如图5,在四棱锥中,平面,,,,,是的中点. (Ⅰ)证明:平面; (Ⅱ)若直线与平面所成的角和与平面所成的角相等,求四棱锥的体积. 19.(本小题满分12分) 已知数列的各项均为正数,记,,, (Ⅰ)若,且对任意,三个数组成等差数列,求数列的通项公式. (Ⅱ)证明:数列是公比为的等比数列的充分必要条件是:对任意,三个数组成公比为的等比数列. 20.(本小题满分13分) 某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为(为正整数). (Ⅰ)设生产A部件的人数为,分别写出完成A,B,C三种部件生产需要的时间; (Ⅱ)假设这三种部件的生产同时开工,试确定正整数的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案. 21.(本小题满分13分) 在直角坐标系xOy中,曲线上的点均在圆外,且对上任意一点,到直线的距离等于该点与圆上点的距离的最小值. (Ⅰ)求曲线的方程; (Ⅱ)设为圆外一点,过作圆的两条切线,分别与曲线相交于点和.证明:当在直线上运动时,四点的纵坐标之积为定值. 22.(本小题满分13分) 已知函数,其中. (Ⅰ)若对一切,恒成立,求的取值集合. (Ⅱ)在函数的图像上取定两点,记直线的斜率为.问:是否存在,使成立?若存在,求的取值范围;若不存在,请说明理由. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合M={-1,0,1},N={x|x2≤x},则M∩N= A.{0} B.{0,1} C.{-1,1} D.{-1,0,0} 【答案】B 【解析】 M={-1,0,1} M∩N={0,1}. 【点评】本题考查了集合的基本运算,较简单,易得分. 先求出,再利用交集定义得出M∩N. 2.命题“若α=,则tanα=1”的逆否命题是 A.若α≠,则tanα≠1 B. 若α=,则tanα≠1 C. 若tanα≠1,则α≠ D. 若tanα≠1,则α= 【答案】C 【解析】因为“若,则”的逆否命题为“若,则”,所以 “若α=,则tanα=1”的逆否命题是 “若tanα≠1,则α≠”. 【点评】本题考查了“若p,则q”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力. 3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是 【答案】D 【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形. 【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 4.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(,) C.若该大学某女生身高增加1cm,则其体重约增加0.85kg D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg 【答案】D 【解析】【解析】由回归方程为=0.85x-85.71知随的增大而增大,所以y与x具有正的线性相关关系,由最小二乘法建立的回归方程得过程知,所以回归直线过样本点的中心(,),利用回归方程可以预测估计总体,所以D不正确. 【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是找不正确的答案,易错. 5. 已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为 A.-=1 B.-=1 C.-=1 D.-=1[w~#ww.zz&st^@] 【答案】A 【解析】设双曲线C :-=1的半焦距为,则. 又C 的渐近线为,点P (2,1)在C 的渐近线上,,即. 又,,C的方程为-=1. 【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型. 6. 函数f(x)=sinx-cos(x+)的值域为 A. [ -2 ,2] B.[-,] C.[-1,1 ] D.[- , ] 【答案】B 【解析】f(x)=sinx-cos(x+),,值域为[-,]. 【点评】利用三角恒等变换把化成的形式,利用,求得的值域. 7. 在△ABC中,AB=2,AC=3,= 1则.[中&%国教*^育出版~网] A. B. C. D. 【答案】A 【解析】由下图知. .又由余弦定理知,解得. 【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.需要注意的夹角为的外角. 8.已知两条直线 :y=m 和: y=(m>0),与函数的图像从左至右相交于点A,B ,与函数的图像从左至右相交于C,D .记线段AC和BD在X轴上的投影长度分别为a ,b ,当m 变化时,的最小值为[来源%&:中国~*教育#出版网] A. B. C. D. 【答案】B 【解析】在同一坐标系中作出y=m,y=(m>0),图像如下图, 由= m,得,= ,得. 依照题意得. ,. 【点评】在同一坐标系中作出y=m,y=(m>0),图像,结合图像可解得. 二 、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡中对应题号后的横线上. (一)选做题(请考生在第9、10、 11三题中任选两题作答,如果全做,则按前两题记分 ) 9. 在直角坐标系xOy 中,已知曲线: (t为参数)与曲线 : (为参数,) 有一个公共点在X轴上,则. 【答案】 【解析】曲线:直角坐标方程为,与轴交点为; 曲线 :直角坐标方程为,其与轴交点为, 由,曲线与曲线有一个公共点在X轴上,知. 【点评】本题考查直线的参数方程、椭圆的参数方程,考查等价转化的思想方法等.曲线与曲线的参数方程分别等价转化为直角坐标方程,找出与轴交点,即可求得. 10.不等式|2x+1|-2|x-1|>0的解集为_______. 【答案】 【解析】令,则由得的解集为. 【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组). 11.如图2,过点P的直线与圆O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于_______. 【答案】 【解析】设交圆O于C,D,如图,设圆的半径为R,由割线定理知 【点评】本题考查切割线定理,考查数形结合思想,由切割线定理知,从而求得圆的半径. (二)必做题(12~16题) 12.已知复数 (i为虚数单位),则|z|=_____. 【答案】10 【解析】=,. 【点评】本题考查复数的运算、复数的模.把复数化成标准的形式,利用 求得. 13.( -)6的二项展开式中的常数项为 .(用数字作答) 【答案】-160 【解析】( -)6的展开式项公式是.由题意知,所以二项展开式中的常数项为. 【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法. 14.如果执行如图3所示的程序框图,输入,n=3,则输出的数S= . 【答案】 【解析】输入,n=3,,执行过程如下:;;,所以输出的是. 【点评】本题考查算法流程图,要明白循环结构中的内容,一般解法是逐步执行,一步步将执行结果写出,特别是程序框图的执行次数不能出错. 15.函数f(x)=sin ()的导函数的部分图像如图4所示,其中,P为图像与y轴的交点,A,C为图像与x轴的两个交点,B为图像的最低点. (1)若,点P的坐标为(0,),则 ; (2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为 . 【答案】(1)3;(2)(lbylfx) 【解析】(1),当,点P的坐标为(0,)时 ; (2)由图知,,设的横坐标分别为. 设曲线段与x轴所围成的区域的面积为则,由几何概型知该点在△ABC内的概率为. 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P在图像上求, (2)几何概型,求出三角形面积及曲边形面积,代入公式即得. 16.设N=2n(n∈N*,n≥2),将N个数x1,x2,…,xN依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3…xN-1x2x4…xN,将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到;当2≤i≤n-2时,将Pi分成2i段,每段个数,并对每段C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置. (1)当N=16时,x7位于P2中的第___个位置; (2)当N=2n(n≥8)时,x173位于P4中的第___个位置. 【答案】(1)6;(2) 【解析】(1)当N=16时, ,可设为, ,即为, ,即, x7位于P2中的第6个位置,; (2)方法同(1),归纳推理知x173位于P4中的第个位置. 【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示. 一次购物量 1至4件 5至8件 9至12件 13至16件 17件及以上 顾客数(人) 30 25 10 结算时间(分钟/人) 1 1.5 2 2.5 3 已知这100位顾客中的一次购物量超过8件的顾客占55%. (Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;[&%中国教育出~版网*#] (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率. (注:将频率视为概率)[中%#国教*育^出版网~] 【解析】(1)由已知,得所以 该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得 的分布为 X 1 1.5 2 2.5 3 P X的数学期望为 . (Ⅱ)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,为该顾客前面第位顾客的结算时间,则 . 由于顾客的结算相互独立,且的分布列都与X的分布列相同,所以 . 故该顾客结算前的等候时间不超过2.5分钟的概率为. 【点评】本题考查概率统计的基础知识,考查分布列及数学期望的计算,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中的一次购物量超过8件的顾客占55%知 从而解得,计算每一个变量对应的概率,从而求得分布列和期望;第二问,通过设事件,判断事件之间互斥关系,从而求得 该顾客结算前的等候时间不超过2.5分钟的概率. 18.(本小题满分12分) 如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.[来源%:*中#国教~育出@版网] (Ⅰ)证明:CD⊥平面PAE; (Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积. 【解析】 解法1(Ⅰ如图(1)),连接AC,由AB=4,, E是CD的中点,所以 所以 而内的两条相交直线,所以CD⊥平面PAE. (Ⅱ)过点B作 由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是为直线PB与平面PAE 所成的角,且. 由知,为直线与平面所成的角. 由题意,知 因为所以 由所以四边形是平行四边形,故于是 在中,所以 于是 又梯形的面积为所以四棱锥的体积为 解法2:如图(2),以A为坐标原点,所在直线分别为建立空间直角坐标系.设则相关的各点坐标为: (Ⅰ)易知因为 所以而是平面内的两条相交直线,所以 (Ⅱ)由题设和(Ⅰ)知,分别是,的法向量,而PB与 所成的角和PB与所成的角相等,所以 由(Ⅰ)知,由故 解得. 又梯形ABCD的面积为,所以四棱锥的体积为 . 【点评】本题考查空间线面垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明即可,第二问算出梯形的面积和棱锥的高,由算得体积,或者建立空间直角坐标系,求得高几体积. 19.(本小题满分12分) 已知数列{an}的各项均为正数,记A(n)=a1+a2+……+an,B(n)=a2+a3+……+an+1,C(n)=a3+a4+……+an+2,n=1,2,…… [来^&源:中教网@~%] (1) 若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{ an }的通项公式. (2) 证明:数列{ an }是公比为q的等比数列的充分必要条件是:对任意,三个数A(n),B(n),C(n)组成公比为q的等比数列. 【解析】(l bylfx) 解(1)对任意,三个数是等差数列,所以 即亦即 故数列是首项为1,公差为4的等差数列.于是 (Ⅱ)(1)必要性:若数列是公比为q的等比数列,则对任意,有 由知,均大于0,于是 即==,所以三个数组成公比为的等比数列. (2)充分性:若对于任意,三个数组成公比为的等比数列, 则 , 于是得即 由有即,从而. 因为,所以,故数列是首项为,公比为的等比数列, 综上所述,数列是公比为的等比数列的充分必要条件是:对任意n∈N﹡,三个数组成公比为的等比数列. 【点评】本题考查等差数列、等比数列的定义、性质及充要条件的证明.第一问由等差数列定义可得;第二问要从充分性、必要性两方面来证明,利用等比数列的定义及性质易得证. 20.(本小题满分13分)[来#源:中教%&*网~] 某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数). (1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间; (2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案. 【解析】 解:(Ⅰ)设完成A,B,C三种部件的生产任务需要的时间(单位:天)分别为 由题设有 期中均为1到200之间的正整数. (Ⅱ)完成订单任务的时间为其定义域为 易知,为减函数,为增函数.注意到 于是 (1)当时, 此时 , 由函数的单调性知,当时取得最小值,解得 .由于 . 故当时完成订单任务的时间最短,且最短时间为. (2)当时, 由于为正整数,故,此时易知为增函数,则 . 由函数的单调性知,当时取得最小值,解得.由于 此时完成订单任务的最短时间大于. (3)当时, 由于为正整数,故,此时由函数的单调性知, 当时取得最小值,解得.类似(1)的讨论.此时 完成订单任务的最短时间为,大于. 综上所述,当时完成订单任务的时间最短,此时生产A,B,C三种部件的人数 分别为44,88,68. 【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想. 21.(本小题满分13分)[www.z%zstep.co*~&m^] 在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值. (Ⅰ)求曲线C1的方程; (Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值. 【解析】(Ⅰ)解法1 :设M的坐标为,由已知得 , 易知圆上的点位于直线的右侧.于是,所以 . 化简得曲线的方程为. 解法2 :由题设知,曲线上任意一点M到圆心的距离等于它到直线的距离,因此,曲线是以为焦点,直线为准线的抛物线,故其方程为. (Ⅱ)当点P在直线上运动时,P的坐标为,又,则过P且与圆 相切得直线的斜率存在且不为0,每条切线都与抛物线有两个交点,切线方程为.于是 整理得 ① 设过P所作的两条切线的斜率分别为,则是方程①的两个实根,故 ② 由得 ③ 设四点A,B,C,D的纵坐标分别为,则是方程③的两个实根,所以 ④ 同理可得 ⑤ 于是由②,④,⑤三式得 . 所以,当P在直线上运动时,四点A,B,C,D的纵坐标之积为定值6400. 【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到四点纵坐标之积为定值,体现“设而不求”思想. 22.(本小题满分13分) 已知函数=,其中a≠0.[来源^:zz#~s&tep.@com] (1) 若对一切x∈R,≥1恒成立,求a的取值集合. (2)在函数的图像上取定两点,,记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由. 【解析】(Ⅰ)若,则对一切,,这与题设矛盾,又, 故. 而令 当时,单调递减;当时,单调递增,故当时,取最小值 于是对一切恒成立,当且仅当 . ① 令则 当时,单调递增;当时,单调递减. 故当时,取最大值.因此,当且仅当即时,①式成立. 综上所述,的取值集合为. (Ⅱ)由题意知, 令则 令,则. 当时,单调递减;当时,单调递增. 故当,即 从而,又 所以 因为函数在区间上的图像是连续不断的一条曲线,所以存在使单调递增,故这样的是唯一的,且.故当且仅当时, . 综上所述,存在使成立.且的取值范围为 .(lbyl fx) 【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为,从而得出a的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断. - 23 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2012 湖南 高考 理科 数学试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文