2019年高考理科数学试题(天津卷)及参考答案.doc
《2019年高考理科数学试题(天津卷)及参考答案.doc》由会员分享,可在线阅读,更多相关《2019年高考理科数学试题(天津卷)及参考答案.doc(23页珍藏版)》请在咨信网上搜索。
2019年普通高等学校招生全国统一考试(天津卷) 数学(理工类) 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。 答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。 祝各位考生考试顺利! 第Ⅰ卷 注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。 2.本卷共8小题,每小题5分,共40分。 参考公式: ·如果事件、互斥,那么. ·如果事件、相互独立,那么. ·圆柱的体积公式,其中表示圆柱的底面面积,表示圆柱的高. ·棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合,则 A. B. C. D. 2.设变量满足约束条件则目标函数的最大值为 A.2 B.3 C.5 D.6 3.设,则“”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 4.阅读下边的程序框图,运行相应的程序,输出的值为 A.5 B.8 C.24 D.29 5.已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为 A. B. C. D. 6.已知,,,则的大小关系为 A. B. C. D. 7.已知函数是奇函数,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若的最小正周期为,且,则 A. B. C. D. 8.已知,设函数若关于的不等式在上恒成立,则的取值范围为 A. B. C. D. 2019年普通高等学校招生全国统一考试(天津卷) 数学(理工类) 第Ⅱ卷 注意事项: 1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。 2.本卷共12小题,共110分。 二.填空题:本大题共6小题,每小题5分,共30分. 9.是虚数单位,则的值为_____________. 10.的展开式中的常数项为_____________. 11.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________. 12.设,直线和圆(为参数)相切,则的值为_____________. 13.设,则的最小值为_____________. 14.在四边形中,,点在线段的延长线上,且,则_____________. 三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分) 在中,内角所对的边分别为.已知,. (Ⅰ)求的值; (Ⅱ)求的值. 16.(本小题满分13分) 设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立. (Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望; (Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率. 17.(本小题满分13分) 如图,平面,,. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的正弦值; (Ⅲ)若二面角的余弦值为,求线段的长. 18.(本小题满分13分) 设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率. 19.(本小题满分14分) 设是等差数列,是等比数列.已知. (Ⅰ)求和的通项公式; (Ⅱ)设数列满足其中. (i)求数列的通项公式; (ii)求. 20.(本小题满分14分) 设函数为的导函数. (Ⅰ)求的单调区间; (Ⅱ)当时,证明; (Ⅲ)设为函数在区间内的零点,其中,证明. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 【答案】D 【解析】 【分析】 先求,再求。 【详解】因为, 所以. 故选D。 【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算. 2.设 【答案】C 【解析】 【分析】 画出可行域,用截距模型求最值。 【详解】已知不等式组表示的平面区域如图中的阴影部分。 目标函数的几何意义是直线在轴上的截距, 故目标函数在点处取得最大值。 由,得, 所以。 故选C。 【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求. 3. 【答案】B 【解析】 【分析】 分别求出两不等式的解集,根据两解集的包含关系确定. 【详解】,即, 等价于,故推不出; 由能推出。 故“”是“”的必要不充分条件。 故选B。 【点睛】充要条件的三种判断方法: (1)定义法:根据p⇒q,q⇒p进行判断; (2)集合法:根据由p,q成立的对象构成的集合之间的包含关系进行判断; (3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题. 4. 【答案】B 【解析】 【分析】 根据程序框图,逐步写出运算结果。 【详解】详解:, 结束循环,故输出。 故选B。 【点睛】解决此类型问题时要注意:①要明确是当型循环结构,还是直到型循环结构,根据各自的特点执行循环体;②要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;③要明确循环体终止的条件是什么,会判断什么时候终止循环体. 5. 【答案】D 【解析】 【分析】 只需把用表示出来,即可根据双曲线离心率的定义求得离心率。 【详解】的方程为,双曲线的渐近线方程为, 故得, 所以,,, 所以。 故选D。 【点睛】双曲线的离心率。 6 【答案】A 【解析】 【分析】 利用利用等中间值区分各个数值的大小。 【详解】, , ,故, 所以。 故选A。 【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待。 7. 【答案】A 【解析】 【分析】 只需根据函数性质逐步得出值即可。 【详解】为奇函数,可知, 由可得; 把其图象上各点的横坐标伸长到原来的倍,得, 由的最小正周期为可得, 由,可得, 所以,。 故选C。 【点睛】在处有定义的奇函数必有。 8. 【答案】C 【解析】 【分析】 先判断时,在上恒成立;若在上恒成立,转化为在上恒成立。 【详解】首先,即, 当时,, 当时,, 故当时,在上恒成立; 若在上恒成立,即在上恒成立, 令,则, 易知为函数在唯一的极小值点、也是最小值点, 故,所以。 综上可知,的取值范围是。 故选C。 【点睛】在上恒成立,等价于;在上恒成立,等价于。 第Ⅱ卷 二.填空题:本大题共6小题. 9.是虚数单位,则的值为________. 【答案】 【解析】 【分析】 先化简复数,再利用复数模的定义求所给复数的模。 【详解】解法一:。 解法二:。 【点睛】所以解答与复数概念或运算有关的问题时,需把所给复数化为代数形式,即a+bi(a,b∈R)的形式,再根据题意求解. 10.是展开式中的常数项为________. 【答案】 【解析】 【分析】 根据二项展开式的通项公式得出通项,根据方程思想得出的值,再求出其常数项。 【详解】, 由,得, 故所求的常数项为. 【点睛】二项式中含有负号时,要把负号与其后面的字母看作一个整体,计算中要特别注意符号。 11.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_______. 【答案】 【解析】 【分析】 根据棱锥的结构特点,确定所求的圆柱的高和底面半径。 【详解】四棱锥的高为, 故圆柱高为,圆柱的底面半径为, 故其体积为。 【点睛】圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半。 12.设,直线和圆(为参数)相切,则的值为____. 【答案】 【解析】 【分析】 根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出满足的方程,解之解得。 【详解】圆心坐标为,圆的半径为, 所以, 即, 解得。 【点睛】直线与圆的位置关系可以使用判别式法,但一般是根据圆心到直线的距离与圆的半径的大小作出判断。 13.设,则的最小值为______. 【答案】 【解析】 【分析】 把分子展开化为,再利用基本不等式求最值。 【详解】, 等号当且仅当,即时成立。 故所求的最小值为。 【点睛】使用基本不等式求最值时一定要验证等号是否能够成立。 14.在四边形中,,点在线段的延长线上,且,则_________. 【答案】 【解析】 【分析】 可利用向量的线性运算,也可以建立坐标系利用向量的坐标运算求解。 【详解】解法一:如图,过点作的平行线交于, 因为,故四边形为菱形。 因为,,所以,即. 因为, 所以. 解法二:建立如图所示的直角坐标系,则,。 因为∥,,所以, 因为,所以, 所以直线的斜率为,其方程为, 直线的斜率为,其方程为。 由得,, 所以 所以。 【点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便。 三.解答题.解答应写出文字说明,证明过程或演算步骤. 15.在中,内角所对边分别为.已知,. (Ⅰ)求的值; (Ⅱ)求的值. 【答案】(Ⅰ)(Ⅱ) 【解析】 【分析】 (Ⅰ)由题意结合正弦定理得到的比例关系,然后利用余弦定理可得的值 (Ⅱ)利用二倍角公式首先求得的值,然后利用两角和的正弦公式可得的值. 【详解】(Ⅰ)解:在中,由正弦定理,得,又由,得,即.又因为,得到,.由余弦定理可得. (Ⅱ)解:由(Ⅰ)可得,从而,,故 【点睛】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查计算求解能力. 16.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立. (Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望; (Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率. 【答案】(Ⅰ)见解析;(Ⅱ) 【解析】 【分析】 (Ⅰ)由题意可知分布列为二项分布,结合二项分布的公式求得概率可得分布列,然后利用二项分布的期望公式求解数学期望即可; (Ⅱ)由题意结合独立事件概率公式计算可得满足题意的概率值. 【详解】(Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为, 故,从面. 所以,随机变量的分布列为: 0 1 2 3 随机变量的数学期望. (Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为,则. 且. 由题意知事件与互斥, 且事件与,事件与均相互独立, 从而由(Ⅰ)知: . 【点睛】本题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力. 17.如图,平面,,. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的正弦值; (Ⅲ)若二面角的余弦值为,求线段的长. 【答案】(Ⅰ)见证明;(Ⅱ)(Ⅲ) 【解析】 【分析】 首先利用几何体的特征建立空间直角坐标系 (Ⅰ)利用直线BF的方向向量和平面ADE的法向量的关系即可证明线面平行; (Ⅱ)分别求得直线CE的方向向量和平面BDE的法向量,然后求解线面角的正弦值即可; (Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF长度的方程,解方程可得CF的长度. 【详解】依题意,可以建立以A为原点,分别以的方向为x轴,y轴,z轴正方向的空间直角坐标系(如图), 可得. 设,则. (Ⅰ)依题意,是平面ADE的法向量, 又,可得, 又因为直线平面,所以平面. (Ⅱ)依题意,, 设为平面BDE的法向量, 则,即, 不妨令z=1,可得, 因此有. 所以,直线与平面所成角的正弦值为. (Ⅲ)设为平面BDF的法向量,则,即. 不妨令y=1,可得. 由题意,有,解得. 经检验,符合题意。 所以,线段的长为. 【点睛】本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力. 18.设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率. 【答案】(Ⅰ)(Ⅱ)或. 【解析】 【分析】 (Ⅰ)由题意得到关于a,b,c的方程,解方程可得椭圆方程; (Ⅱ)联立直线方程与椭圆方程确定点P的值,从而可得OP的斜率,然后利用斜率公式可得MN的斜率表达式,最后利用直线垂直的充分必要条件得到关于斜率的方程,解方程可得直线的斜率. 【详解】(Ⅰ) 设椭圆的半焦距为,依题意,,又,可得,b=2,c=1. 所以,椭圆方程为. (Ⅱ)由题意,设.设直线斜率为, 又,则直线的方程为,与椭圆方程联立, 整理得,可得, 代入得, 进而直线的斜率, 在中,令,得. 由题意得,所以直线的斜率为. 由,得, 化简得,从而. 所以,直线的斜率为或. 【点睛】本题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力. 19.设是等差数列,是等比数列.已知. (Ⅰ)求和的通项公式; (Ⅱ)设数列满足其中. (i)求数列的通项公式; (ii)求. 【答案】(Ⅰ);(Ⅱ)(i)(ii) 【解析】 【分析】 (Ⅰ)由题意首先求得公比和公差,然后确定数列的通项公式即可; (Ⅱ)结合(Ⅰ)中的结论可得数列的通项公式,结合所得的通项公式对所求的数列通项公式进行等价变形,结合等比数列前n项和公式可得的值. 【详解】(Ⅰ)设等差数列的公差为,等比数列的公比为. 依题意得,解得, 故,. 所以,的通项公式为,的通项公式为. (Ⅱ)(i). 所以,数列的通项公式为. (ii) . 【点睛】本题主要考查等差数列、等比数列的通项公式及其前n项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力. 20.设函数为的导函数. (Ⅰ)求的单调区间; (Ⅱ)当时,证明; (Ⅲ)设为函数在区间内的零点,其中,证明. 【答案】(Ⅰ)单调递增区间为的单调递减区间为.(Ⅱ)见证明;(Ⅲ)见证明 【解析】 分析】 (Ⅰ)由题意求得导函数的解析式,然后由导函数的符号即可确定函数的单调区间; (Ⅱ)构造函数,结合(Ⅰ)的结果和导函数的符号求解函数的最小值即可证得题中的结论; (Ⅲ)令,结合(Ⅰ),(Ⅱ)的结论、函数的单调性和零点的性质放缩不等式即可证得题中的结果. 【详解】(Ⅰ)由已知,有. 当时,有,得,则单调递减; 当时,有,得,则单调递增. 所以,的单调递增区间为, 的单调递减区间为. (Ⅱ)记.依题意及(Ⅰ)有:, 从而.当时,,故 . 因此,在区间上单调递减,进而. 所以,当时,. (Ⅲ)依题意,,即. 记,则. 且. 由及(Ⅰ)得. 由(Ⅱ)知,当时,,所以在上为减函数, 因此. 又由(Ⅱ)知,故: . 所以. 【点睛】本题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 理科 数学试题 天津 参考答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文