2015年海南省高考数学试题及答案(理科).docx
《2015年海南省高考数学试题及答案(理科).docx》由会员分享,可在线阅读,更多相关《2015年海南省高考数学试题及答案(理科).docx(11页珍藏版)》请在咨信网上搜索。
2015年普通高等学校招生全国统一考试(海南卷) 理科数学 注意事项 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A={-2,-1,0,2},B={x|(X-1)(x+2)<0},则A∩B= (A){-1,0} (B){0,1} (C){-1,0,1} (D){0,1,2} 2.若a为实数且(2+ai)(a-2i)=-4i,则a = (A)-1 (B)0 (C)1 (D)2 3. 根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是 (A)逐年比较,2008年减少二氧化硫排放量的效果最显著 (B)2007年我国治理二氧化硫排放显现 (C)2006年以来我国二氧化硫年排放量呈减少趋势 (D)2006年以来我国二氧化硫年排放量与年份正相关 4.等比数列{an}满足a1=3,a1+ a3+ a5=21,则a3+ a5+ a7 = (A)21 (B)42 (C)63 (D)84 5.设函数f(x)=,则f (-2)+ f (log212) = (A)3 (B)6 (C)9 (D)12 6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则 截去部分体积与剩余部分体积的与剩余部分体积的比值为 (A) (B) (C) (D) 7.过三点A(1,3),B(4,2),C(1,-7)的圆交于y轴于M、N两点,则= (A)2 (B)8 (C)4 (D)10 8.右边程序抗土的算法思路源于我国古代数学名著《九章算术》 中的“更相减损术”。执行该程序框图,若输入a,b分别为14,18, 则输出的a= (A)0 (B)2 (C)4 (D)14 9. 已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体 积的最大值为36,则球O的表面积为 (A)36π (B)64π (C)144π (D)256π 10. 如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与 DA运动,∠BOP=x。将动点P到AB两点距离之和表示为x的函数f(x),则f(x) 的图像大致为 11. 已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为 120°,则E的离心率为 (A) (B)2 (C) (D) 12.设函数f’(x)是奇函数f (x)(x∈R)的导函数,f(−1)=0,当x>0时,x f’(x)-f (x)<0,则使得f (x) >0成立的x的取值范围是 (A) (-∞,-1)∪(0,1) (B) (-1,0)∪(1,+∞) (C) (-∞,-1)∪(-1,0) (D) (0,1)∪(1,+∞) 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答。 二、填空题:本大题共4小题,每小题5分。 13.设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=________.(用数字填写答案) 14.若x,y满足约束条件,则z= x+y的最大值为____________.. 15.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a =__________. 16.设Sn是数列{an}的前n项和,且a1=-1,an+1=Sn Sn+1,则Sn=________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) ∆ABC中,D是BC上的点,AD平分∠BAC,∆ABD是∆ADC面积的2倍。 (Ⅰ) 求; (Ⅱ) 若AD=1,DC=,求BD和AC的长. 18. (本小题满分12分) 某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); (Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级: 满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意 满意 非常满意 记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”。假设两地区用户的评价结果相互独立。根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率 19. (本小题满分12分) 如图,长方体ABCD−A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F。过带你E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求直线AF与平面α所成角的正弦值 20. (本小题满分12分) 已知椭圆C:9x2+ y2 = m2 (m>0),直线l不过原点O且不平行于坐标轴,l与C有 两个交点A,B,线段AB的中点为M. (I)证明:直线OM的斜率与l的斜率的乘积为定值; (II)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否平行四边行? 若能,求此时l的斜率,若不能,说明理由. 21. (本小题满分12分) 设函数fx=emx+x2−mx. (Ⅰ)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增; (Ⅱ)若对于任意x1, x2∈[-1,1],都有|f(x1)− f(x2)|≤e−1,求m的取值范围 请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号. 22.(本小题满分10分)选修4—1:几何证明选讲 如图,O为等腰三角形ABC内一点,圆O与ABC的底边BC交于M、N两点与底边上的高AD交于点G,且与AB、AC分别相切于E、F两点. (I)证明:EF平行于BC (II) 若AG等于圆O的半径,且AE=MN=,求四边形EBCF的面积。 23(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy中,曲线C1:,其中0≤α<π ,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=cosθ . (I).求C2与C3交点的直角坐标 (II).若C1与C2相交于点A,C1与C3相交于点B,求的最大值 (24)(本小题满分10分)选修4-5不等式选讲 设a、b、c、d均为正数,且a+b=c+d,证明: (I)若ab>cd ,则; (II)是的充要条件. (24)(本小题满分10分)选修4-5不等式选讲 设均为正数,且,证明: (I)若,则; (II)是的充要条件. 2015年海南省数学理科高考试题及答案解析 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=( ) (A){--1,0} (B){0,1} (C){-1,0,1} (D){,0,,1,2} 【答案】A 【解析】由已知得,故,故选A (2)若a为实数且(2+ai)(a-2i)=-4i,则a=( ) (A)-1 (B)0 (C)1 (D)2 【答案】B 【解析】 [来源:Z_xx_k.Com] (3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是( ) (A) 逐年比较,2008年减少二氧化硫排放量的效果最显著 (B) 2007年我国治理二氧化硫排放显现 (C) 2006年以来我国二氧化硫年排放量呈减少趋势 (D) 2006年以来我国二氧化硫年排放量与年份正相关 【答案】D 【解析】由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关. (4)等比数列{an}满足a1=3, =21,则 ( ) (A)21 (B)42 (C)63 (D)84 【答案】B 【解析】 (5)设函数,( ) (A)3 (B)6 (C)9 (D)12 【答案】C 【解析】由已知得,又,所以,故 . (6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为 (A) (B) (C) (D) 【答案】D 【解析】由三视图得,在正方体中,截去四面体,如图所示,,设正方体棱长为,则,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为. (7)过三点A(1,3),B(4,2),C(1,-7)的圆交于y轴于M、N两点,则= (A)2 (B)8 (C)4 (D)10 【答案】C 【解析】 (8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入a,b分别为14,18,则输出的a= A.0 B.2 C.4 D.14 【答案】B[来源:Z.xx.k.Com] 【解析】程序在执行过程中,,的值依次为,;;;;;,此时程序结束,输出的值为2,故选B. (9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为 A.36π B.64π C.144π D.256π 【答案】C 【解析】如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为 ,故选C. 10.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A、B两点距离之和表示为x的函数f(x),则f(x)的图像大致为 [来源:学科网] 【答案】B 【解析】 的运动过程可以看出,轨迹关于直线对称,且,且轨迹非线型,故选B. (11)已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为 (A)√5 (B)2 (C)√3 (D)√2 【答案】D 【解析】 (12)设函数f’(x)是奇函数的导函数,f(-1)=0,当时,,则使得成立的x的取值范围是 (A) (B) (C) (D) 【答案】A 【解析】 记函数,则,因为当时,,故当时,,所以在单调递减;又因为函数是奇函数,故函数是偶函数,所以在单调递减,且.当时,,则;当时,,则,综上所述,使得成立的的取值范围是 ,故选A. 二、填空题 (13)设向量,不平行,向量与平行,则实数_________. 【答案】 【解析】因为向量与平行,所以,则所以. (14)若x,y满足约束条件,则的最大值为____________. 【答案】 (15)的展开式中x的奇数次幂项的系数之和为32,则__________. 【答案】 【解析】由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得. (16)设是数列的前n项和,且,,则________. 【答案】 【解析】由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以. 三.解答题 17.(本题满分12分) 中,是上的点,平分,面积是面积的2倍. (Ⅰ) 求; (Ⅱ)若,,求和的长. 【答案】(Ⅰ);(Ⅱ). (Ⅱ)因为,所以.在和中,由余弦定理得 ,. .由(Ⅰ)知,所以. 考点:1、三角形面积公式;2、正弦定理和余弦定理. 18.(本题满分12分) 某公司为了解用户对其产品的满意度,从,两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); A地区 B地区 4 5 6 7 8 9 (Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级: 满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意 满意 非常满意 记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率. 【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】 试题分析:(Ⅰ)将两地区用户对产品的满意度评分的个位数分别列与茎的两侧,并根据数字的集中或分散来判断平均值和方差的大小;(Ⅱ)事件“A地区用户的满意度等级高于B地区用户的满意度等级”分为两种情况:当B地区满意度等级为不满意时,A地区的满意度等级为满意或非常满意;当B地区满意度等级为满意时,A地区满意度等级为非常满意.再利用互斥事件和独立事件的概率来求解. 试题解析:(Ⅰ)两地区用户满意度评分的茎叶图如下 A地区 B地区 4 5 6 7 8 9 6 8 1 3 6 4 3 2 4 5 5 6 4 2 3 3 4 6 9 6 8 8 6 4 3 3 2 1 9 2 8 6 5 1 1 3 7 5 5 2 表示事件:“B地区用户满意度等级为满意”. 则与独立,与独立,与互斥,. . 由所给数据得,,,发生的概率分别为,,,.故, ,,,故. 考点:1、茎叶图和特征数;2、互斥事件和独立事件. 19.(本题满分12分) 如图,长方体中,,,,点,分别在,上,.过点,的平面与此长方体的面相交,交线围成一个正方形. D D1 C1 A1 E F A B C B1 (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线与平面所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】 试题分析:(Ⅰ)由线面平行和面面平行的性质画平面与长方体的面的交线;(Ⅱ)由交线围成的正方形,计算相关数据.以为坐标原点,的方向为轴的正方向,建立如图所示的空间直角坐标系,并求平面的法向量和直线的方向向量,利用求直线与平面所成角的正弦值. 试题解析:(Ⅰ)交线围成的正方形如图: (Ⅱ)作,垂足为,则,,因为为正方形,所以.于是,所以.以为坐标原点,的方向为轴的正方向,建立如图所示的空间直角坐标系,则,,,,,.设是平面的法向量,则即所以可取.又,故.所以直线与平面所成角的正弦值为. 考点:1、直线和平面平行的性质;2、直线和平面所成的角. 20.(本题满分12分) 已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为. (Ⅰ)证明:直线的斜率与的斜率的乘积为定值; (Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由. 【答案】(Ⅰ)详见解析;(Ⅱ)能,或. 【解析】 试题分析:(Ⅰ)题中涉及弦的中点坐标问题,故可以采取“点差法”或“韦达定理”两种方法求解:设端点的坐标,代入椭圆方程并作差,出现弦的中点和直线的斜率;设直线的方程同时和椭圆方程联立,利用韦达定理求弦的中点,并寻找两条直线斜率关系;(Ⅱ)根据(Ⅰ)中结论,设直线方程并与椭圆方程联立,求得坐标,利用以及直线过点列方程求的值. 试题解析:(Ⅰ)设直线,,,. 将代入得,故, .于是直线的斜率,即.所以直线的斜率与的斜率的乘积为定值. (Ⅱ)四边形能为平行四边形. 因为直线过点,所以不过原点且与有两个交点的充要条件是,. 由(Ⅰ)得的方程为.设点的横坐标为.由得,即.将点的坐标代入直线的方程得,因此.四边形为平行四边形当且仅当线段与线段互相平分,即.于是 .解得,.因为,,,所以当的斜率为 或时,四边形为平行四边形. 考点:1、弦的中点问题;2、直线和椭圆的位置关系. 21.(本题满分12分) 设函数. (Ⅰ)证明:在单调递减,在单调递增; (Ⅱ)若对于任意,都有,求的取值范围. 【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】 试题分析:(Ⅰ)先求导函数,根据的范围讨论导函数在和的符号即可;(Ⅱ)恒成立,等价于.由是两个独立的变量,故可求研究的值域,由(Ⅰ)可得最小值为,最大值可能是或,故只需,从而得关于的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解. 考点:导数的综合应用. (请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号。高三网) 22.(本小题满分10分) 选修4—1:几何证明选讲 如图,为等腰三角形内一点,圆与的底边交于、两点与底边上的高交于点,与、分别相切于、两点. G A E F O N D B C M (Ⅰ)证明:; (Ⅱ) 若等于的半径,且,求四边形的面积. 【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】 试题分析:(Ⅰ)由已知得,欲证明,只需证明,由切线长定理可得,故只需证明是角平分线即可;(Ⅱ)连接,,在中,易求得,故和都是等边三角形,求得其边长,进而可求其面积.四边形的面积为两个等边三角形面积之差. 试题解析:(Ⅰ)由于是等腰三角形,,所以是的平分线.又因为分别与、相切于、两点,所以,故.从而. (Ⅱ)由(Ⅰ)知,,,故是的垂直平分线,又是的弦,所以在上.连接,,则.由等于的半径得,所以.所以和都是等边三角形.因为,所以,. 因为,,所以.于是,.所以四边形的面积. 考点:1.等腰三角形的性质;2、圆的切线长定理;3、圆的切线的性质. 23.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线. (Ⅰ).求与交点的直角坐标; (Ⅱ).若与相交于点,与相交于点,求的最大值. 【答案】(Ⅰ)和;(Ⅱ). 【解析】 试题分析:(Ⅰ)将曲线与的极坐标方程化为直角坐标方程,联立求交点,得其交点的直角坐标,也可以直接联立极坐标方程,求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立与和与的极坐标方程,求得的极坐标,由极径的概念将表示,转化为三角函数的最大值问题处理. 试题解析:(Ⅰ)曲线的直角坐标方程为,曲线的直角坐标方程为.联立解得或所以与交点的直角坐标为和. (Ⅱ)曲线的极坐标方程为,其中.因此得到极坐标为,的极坐标为.所以,当时,取得最大值,最大值为. 考点:1、极坐标方程和直角坐标方程的转化;2、三角函数的最大值. 24.(本小题满分10分)选修4-5不等式选讲 设均为正数,且,证明: (Ⅰ)若,则; (Ⅱ)是的充要条件. 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析. 考点:推理证明. 11- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015 海南省 高考 数学试题 答案 理科
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文