2013年海南省高考数学试题及答案(理科).doc
《2013年海南省高考数学试题及答案(理科).doc》由会员分享,可在线阅读,更多相关《2013年海南省高考数学试题及答案(理科).doc(9页珍藏版)》请在咨信网上搜索。
2013年普通高等学校招生全国统一考试数学 (全国新课标卷II) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅱ,理1)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( ). A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z满足(1-i)z=2i,则z=( ). A.-1+i B.-1-I C.1+i D.1-i 3.(2013课标全国Ⅱ,理3)等比数列{an}的前n项和为Sn.已知S3=a2+10a1,a5=9,则a1=( ). A. B. C. D. 4.(2013课标全国Ⅱ,理4)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则( ). A.α∥β且l∥α B.α⊥β且l⊥β C.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l 5.(2013课标全国Ⅱ,理5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( ). A.-4 B.-3 C.-2 D.-1 6.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N=10,那么输出的S=( ). A. B. C. D. 7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ). 8.(2013课标全国Ⅱ,理8)设a=log36,b=log510,c=log714,则( ). A.c>b>a B.b>c>a C.a>c>b D.a>b>c 9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a=( ). A. B. C.1 D.2 10.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ). A.x0∈R,f(x0)=0 B.函数y=f(x)的图像是中心对称图形 C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减 D.若x0是f(x)的极值点,则f′(x0)=0 11.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ). A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x 12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ). A.(0,1) B. C. D. 第Ⅱ卷 本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。第22题~第24题为选考题,考生根据要求做答。 二、填空题:本大题共4小题,每小题5分. 13.(2013课标全国Ⅱ,理13)已知正方形ABCD的边长为2,E为CD的中点,则=__________. 14.(2013课标全国Ⅱ,理14)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=__________. 15.(2013课标全国Ⅱ,理15)设θ为第二象限角,若,则sin θ+cos θ=__________. 16.(2013课标全国Ⅱ,理16)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为__________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(2013课标全国Ⅱ,理17)(本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知a=bcos C+csin B. (1)求B; (2)若b=2,求△ABC面积的最大值. 18.(2013课标全国Ⅱ,理18)(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=. (1)证明:BC1∥平面A1CD; (2)求二面角D-A1C-E的正弦值. 19.(2013课标全国Ⅱ,理19)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润. (1)将T表示为X的函数; (2)根据直方图估计利润T不少于57 000元的概率; (3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望. 20.(2013课标全国Ⅱ,理20)(本小题满分12分)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为. (1)求M的方程; (2)C,D为M上两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值. 21.(2013课标全国Ⅱ,理21)(本小题满分12分)已知函数f(x)=ex-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一题计分,做答时请写清题号. 22.(2013课标全国Ⅱ,理22)(本小题满分10分)选修4—1:几何证明选讲 如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆. (1)证明:CA是△ABC外接圆的直径; (2)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值. 23.(2013课标全国Ⅱ,理23)(本小题满分10分)选修4—4:坐标系与参数方程 已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点. (1)求M的轨迹的参数方程; (2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点. 24.(2013课标全国Ⅱ,理24)(本小题满分10分)选修4—5:不等式选讲 设a,b,c均为正数,且a+b+c=1,证明: (1)ab+bc+ac≤; (2). 2013年普通高等学校招生全国统一考试数学 (全国新课标卷II) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:A 解析:解不等式(x-1)2<4,得-1<x<3,即M={x|-1<x<3}.而N={-1,0,1,2,3},所以M∩N={0,1,2},故选A. 2. 答案:A 解析:==-1+i. 3. 答案:C 解析:设数列{an}的公比为q,若q=1,则由a5=9,得a1=9,此时S3=27,而a2+10a1=99,不满足题意,因此q≠1. ∵q≠1时,S3==a1·q+10a1, ∴=q+10,整理得q2=9. ∵a5=a1·q4=9,即81a1=9,∴a1=. 4. 答案:D 解析:因为m⊥α,l⊥m,lα,所以l∥α.同理可得l∥β. 又因为m,n为异面直线,所以α与β相交,且l平行于它们的交线.故选D. 5. 答案:D 解析:因为(1+x)5的二项展开式的通项为(0≤r≤5,r∈Z),则含x2的项为+ax·=(10+5a)x2,所以10+5a=5,a=-1. 6. 答案:B 解析:由程序框图知,当k=1,S=0,T=1时,T=1,S=1; 当k=2时,,; 当k=3时,,; 当k=4时,,;…; 当k=10时,,,k增加1变为11,满足k>N,输出S,所以B正确. 7. 答案:A 解析:如图所示,该四面体在空间直角坐标系O-xyz的图像为下图: 则它在平面zOx上的投影即正视图为,故选A. 8. 答案:D 解析:根据公式变形,,,,因为lg 7>lg 5>lg 3,所以,即c<b<a.故选D. 9. 答案:B 解析:由题意作出所表示的区域如图阴影部分所示, 作直线2x+y=1,因为直线2x+y=1与直线x=1的交点坐标为(1,-1),结合题意知直线y=a(x-3)过点(1,-1),代入得,所以. 10. 答案:C 解析:∵x0是f(x)的极小值点,则y=f(x)的图像大致如下图所示,则在(-∞,x0)上不单调,故C不正确. 11. 答案:C 解析:设点M的坐标为(x0,y0),由抛物线的定义,得|MF|=x0+=5,则x0=5-. 又点F的坐标为,所以以MF为直径的圆的方程为(x-x0)+(y-y0)y=0. 将x=0,y=2代入得px0+8-4y0=0,即-4y0+8=0,所以y0=4. 由=2px0,得,解之得p=2,或p=8. 所以C的方程为y2=4x或y2=16x.故选C. 12. 答案:B 第Ⅱ卷 本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。第22题~第24题为选考题,考生根据要求做答。 二、填空题:本大题共4小题,每小题5分. 13.答案:2 解析:以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,如图所示,则点A的坐标为(0,0),点B的坐标为(2,0),点D的坐标为(0,2),点E的坐标为(1,2),则=(1,2),=(-2,2),所以. 14.答案:8 解析:从1,2,…,n中任取两个不同的数共有种取法,两数之和为5的有(1,4),(2,3)2种,所以,即,解得n=8. 15.答案: 解析:由,得tan θ=,即sin θ=cos θ. 将其代入sin2θ+cos2θ=1,得. 因为θ为第二象限角,所以cos θ=,sin θ=,sin θ+cos θ=. 16.答案:-49 解析:设数列{an}的首项为a1,公差为d,则S10==10a1+45d=0,① S15==15a1+105d=25.② 联立①②,得a1=-3,, 所以Sn=. 令f(n)=nSn,则,. 令f′(n)=0,得n=0或. 当时,f′(n)>0,时,f′(n)<0,所以当时,f(n)取最小值,而n∈N+,则f(6)=-48,f(7)=-49,所以当n=7时,f(n)取最小值-49. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17. 解:(1)由已知及正弦定理得 sin A=sin Bcos C+sin Csin B.① 又A=π-(B+C),故 sin A=sin(B+C)=sin Bcos C+cos Bsin C.② 由①,②和C∈(0,π)得sin B=cos B, 又B∈(0,π),所以. (2)△ABC的面积. 由已知及余弦定理得4=a2+c2-. 又a2+c2≥2ac,故,当且仅当a=c时,等号成立. 因此△ABC面积的最大值为. 18. 解:(1)连结AC1交A1C于点F,则F为AC1中点. 又D是AB中点,连结DF,则BC1∥DF. 因为DF⊂平面A1CD,BC1平面A1CD, 所以BC1∥平面A1CD. (2)由AC=CB=得,AC⊥BC. 以C为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系C-xyz. 设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),=(1,1,0),=(0,2,1),=(2,0,2). 设n=(x1,y1,z1)是平面A1CD的法向量, 则即 可取n=(1,-1,-1). 同理,设m是平面A1CE的法向量, 则可取m=(2,1,-2). 从而cos〈n,m〉=, 故sin〈n,m〉=. 即二面角D-A1C-E的正弦值为. 19. 解:(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39 000, 当X∈[130,150]时,T=500×130=65 000. 所以 (2)由(1)知利润T不少于57 000元当且仅当120≤X≤150. 由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7. (3)依题意可得T的分布列为 T 45 000 53 000 61 000 65 000 P 0.1 0.2 0.3 0.4 所以ET=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400. 20. 解:(1)设A(x1,y1),B(x2,y2),P(x0,y0), 则,,, 由此可得. 因为x1+x2=2x0,y1+y2=2y0,, 所以a2=2b2. 又由题意知,M的右焦点为(,0),故a2-b2=3. 因此a2=6,b2=3. 所以M的方程为. (2)由 解得或 因此|AB|=. 由题意可设直线CD的方程为 y=, 设C(x3,y3),D(x4,y4). 由得3x2+4nx+2n2-6=0. 于是x3,4=. 因为直线CD的斜率为1, 所以|CD|=. 由已知,四边形ACBD的面积. 当n=0时,S取得最大值,最大值为. 所以四边形ACBD面积的最大值为. 21. 解:(1)f′(x)=. 由x=0是f(x)的极值点得f′(0)=0,所以m=1. 于是f(x)=ex-ln(x+1),定义域为(-1,+∞),f′(x)=. 函数f′(x)=在(-1,+∞)单调递增,且f′(0)=0. 因此当x∈(-1,0)时,f′(x)<0; 当x∈(0,+∞)时,f′(x)>0. 所以f(x)在(-1,0)单调递减,在(0,+∞)单调递增. (2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0. 当m=2时,函数f′(x)=在(-2,+∞)单调递增. 又f′(-1)<0,f′(0)>0, 故f′(x)=0在(-2,+∞)有唯一实根x0,且x0∈(-1,0). 当x∈(-2,x0)时,f′(x)<0; 当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值. 由f′(x0)=0得=,ln(x0+2)=-x0, 故f(x)≥f(x0)=+x0=>0. 综上,当m≤2时,f(x)>0. 请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一题计分,做答时请写清题号. 22. 解:(1)因为CD为△ABC外接圆的切线, 所以∠DCB=∠A,由题设知, 故△CDB∽△AEF,所以∠DBC=∠EFA. 因为B,E,F,C四点共圆, 所以∠CFE=∠DBC, 故∠EFA=∠CFE=90°. 所以∠CBA=90°,因此CA是△ABC外接圆的直径. (2)连结CE,因为∠CBE=90°,所以过B,E,F,C四点的圆的直径为CE,由DB=BE,有CE=DC,又BC2=DB·BA=2DB2,所以CA2=4DB2+BC2=6DB2. 而DC2=DB·DA=3DB2,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为. 23. 解:(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α), 因此M(cos α+cos 2α,sin α+sin 2α). M的轨迹的参数方程为(α为参数,0<α<2π). (2)M点到坐标原点的距离 (0<α<2π). 当α=π时,d=0,故M的轨迹过坐标原点. 24. 解:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca, 得a2+b2+c2≥ab+bc+ca. 由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1. 所以3(ab+bc+ca)≤1,即ab+bc+ca≤. (2)因为,,, 故≥2(a+b+c), 即≥a+b+c. 所以≥1. 2013 全国新课标卷2理科数学 第9页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 海南省 高考 数学试题 答案 理科
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文