二次函数经典练习题48493.doc
《二次函数经典练习题48493.doc》由会员分享,可在线阅读,更多相关《二次函数经典练习题48493.doc(10页珍藏版)》请在咨信网上搜索。
第十四讲 二次函数的同象和性质 【重点考点例析】 考点一:二次函数图象上点的坐标特点 例1已知二次函数y=a(x-2)2+c(a>0),当自变量x分别取、3、0时,对应的函数值分别:y1,y2,y3,,则y1,y2,y3的大小关系正确的是( ) A.y3<y2<y1 B.y1<y2<y3 C.y2<y1<y3 D.y3<y1<y2 对应训练 1.已知二次函数y=x2-7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是( ) A.y1>y2>y3 B.y1<y2<y3 C.y2>y3>y1 D.y2<y3<y1 考点二:二次函数的图象和性质 例2 对于二次函数y=x2-2mx-3,有下列说法: ①它的图象与x轴有两个公共点; ②如果当x≤1时y随x的增大而减小,则m=1; ③如果将它的图象向左平移3个单位后过原点,则m=-1; ④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3. 其中正确的说法是 .(把你认为正确说法的序号都填上)考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点. 对应训练 2.如图,抛物线y1=a(x+2)2-3与y2=(x-3)²+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论: ①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC; 其中正确结论是( ) A.①② B.②③ C.③④ D.①④ 考点三:抛物线的特征与a、b、c的关系 例3 二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,有如下结论: ①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2, 则正确的结论是( ) A.①② B.①③ C.②④ D.③④ 对应训练 3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=.下列结论中,正确的是( ) A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b 考点四:抛物线的平移 例4 如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是( ) A.y=(x+1)2-1 B.y=(x+1)2+1 C.y=(x-1)2+1 D.y=(x-1)2-1 对应训练 4.已知下列函数①y=x2;②y=-x2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x2+2x-3的图象的有 (填写所有正确选项的序号). 【聚焦中考】 1.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 2.如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是( ) A.y的最大值小于0 B.当x=0时,y的值大于1 C.当x=-1时,y的值大于1 D.当x=-3时,y的值小于0 3.(2015•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数在同一平面直角坐标系中的图象大致是( ) A. B. C. D. 4.设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1,y2,y3的大小关系为( ) A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2 5.已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x<3时,y随x的增大而减小.则其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个 6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④abc<0. 其中正确的是( ) A.①② B.②③ C.③④ D.①④ 7.将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A.y=3(x+2)2+3 B.y=3(x-2)2+3 C.y=3(x+2)2-3 D.y=3(x-2)2-3 【备考真题过关】 一、选择题 1.二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是( ) A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>3 2.已知二次函数y=x2-4x+5的顶点坐标为( ) A.(-2,-1) B.(2,1) C.(2,-1) D.(-2,1) 3.若二次函数y=ax2+bx+a2-2(a、b为常数)的图象如图,则a的值为( ) A.1 B. C.- D.-2 4.如图,二次函数y=ax2+bx+c的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是( ) A. 当x=0时,y的值大于1 B. 当x=3时,y的值小于0 C. 当x=1时,y的值大于1 D. y的最大值小于0 5.对于二次函数y=2(x+1)(x-3),下列说法正确的是( ) A.图象的开口向下 B.当x>1时,y随x的增大而减小 C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=-1 6.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有( ) A.3个 B.2个 C.1个 D.0个 7.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( ) A.y=(x+2)2+2 B.y=(x+2)2-2 C.y=(x-2)2+2 D.y=(x-2)2-2 8.在平面直角坐标系中,若将抛物线y=2x2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是( ) A.(-2,3) B.(-1,4) C.(1,4) D.(4,3) 9.在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( ) A.1 B.2 C.3 D.6 二、填空题 10平面直角坐标系中,点A是抛物线y=a(x-3)2+k与y轴的交点,点B是这条抛物上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为 . 11二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法: ①abc<0; ②a-b+c<0; ③3a+c<0; ④当-1<x<3时,y>0. 其中正确的是 (把正确的序号都填上). 12将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是 . 13.函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为 . 14如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为 . 三、解答题 15知:抛物线y=(x-1)2-3. (1)写出抛物线的开口方向、对称轴; (2)函数y有最大值还是最小值?并求出这个最大(小)值; (3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式. 第十五讲 二次函数的综合题及应用 【重点考点例析】 考点一:确定二次函数关系式 例1 如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,-3) (1)求此二次函数的解析式; (2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标. 对应训练 1.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标. 考点二:二次函数与x轴的交点问题 例2 已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( ) A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3 对应训练 2.二次函数y=2x2+mx+8的图象如图所示,则m的值是( ) A.-8 B.8 C.±8 D.6 考点三:二次函数的实际应用 例3 为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元. (1)求w与x之间的函数关系式. (2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元? 考点四:二次函数综合性题目 例4 如图,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA= . (1)求抛物线的解析式; (2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值; (3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由. 对应训练 4.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC. (1)求直线CD的解析式; (2)求抛物线的解析式; (3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO; (4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 【聚焦中考】 1.如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为( ) A.(,) B.(2,2) C.(,2) D.(2,) 2如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由. (3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积. 3如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=ax2+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(-,0),以0C为直径作半圆,圆心为D. (1)求二次函数的解析式; (2)求证:直线BE是⊙D的切线; (3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由. 7.如图,抛物线y=x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0) (1)求该抛物线的解析式. (2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标. 8.如图,抛物线y=ax2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,且AB=4,点D(2, )在抛物线上,直线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点. (1)求抛物线的解析式; (2)若直线l平分四边形OBDC的面积,求k的值; (3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由. 【备考真题过关】 一、选择题 1.已知函数y=x2+2x-3,当x=m时,y<0,则m的值可能是( ) A.-4 B.0 C.2 D.3 2.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是( ) A.a>0 B.b2-4ac≥0 C.x1<x0<x2 D.a(x0-x1)(x0-x2)<0 二、填空题 3若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 0或1 . 4如图,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点F(0,n),且与直线y=-n始终保持相切,则n= (用含a的代数式表示). 三、解答题 5如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5). (1)求此抛物线的解析式; (2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明; (3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由. 12.如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=-x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E. (1)求抛物线的解析式. (2)当DE=4时,求四边形CAEB的面积. (3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 经典 练习题 48493
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文