数字滤波器的dsp实现毕业论文.doc
《数字滤波器的dsp实现毕业论文.doc》由会员分享,可在线阅读,更多相关《数字滤波器的dsp实现毕业论文.doc(80页珍藏版)》请在咨信网上搜索。
兰州理工大学毕业论文 摘 要 当前我们正处于数字化时代,数字信号处理技术受到了人们的广泛关注,其理论及算法随着计算机技术和微电子技术的发展得到了飞速的发展,被广泛应用于语音图象处理、数字通信、谱分析、模式识别、自动控制等领域。数字滤波器是数字信号处理中最重要的组成部分之一,几乎出现在所有的数字信号处理系统中。数字滤波器是指完成信号滤波处理的功能,用有限精度算法实现的离散时间线性非时变系统,其输入是一组(由模拟信号取样和量化的)数字量,其输出是经过变换的另一组数字量。相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率响应特性可做成非常接近于理想的特性,且精度可以达到很高,容易集成等,这些优势决定了数字滤波器的应用越来越广泛。同时DSP(数字信号处理器)的出现和FPGA的迅速发展也促进了数字滤波器的发展,并为数字滤波器的硬件实现提供了更多的选择。 本论文的主要研究了数字滤波器的基本理论及其算法。基于TI公司的数字信号处理器TMS320VC5509设计了一款稳定度高,低功耗的数字滤波器系统,并完成了软硬调试工作。主要工作如下: (1) 研究了数字滤波器的基本理论,以及数字滤波器的实现方法。通过学习识字滤波器的结构、数字滤波器的设计理论,掌握了各种数字滤波器的原理和特性。为实现数字滤波器奠定了理论基础。 (2) 研究分析了如何利用MATLAB仿真软件来设计出符合各种要求的数字滤波器。并采用了相关的函数设计了几款常用的数字滤波器,并得到了滤波器的相关系数,为利用DSP实现数字滤波做好了一些前期的工作。 (3) 根据TI公司5000系列数字信号处理器的基本结构和特征,充分利用其片上资源t结合MATLAB软件的仿真,用软件实现高性能稳定的数字滤波器。 关键字:数字滤波器,DSP,IIR(无限长单位脉冲响应),FIR(有限长单位脉冲响应) Abstract Nowadays we are in the digital time,the technology of digital signal process are got extensive attention by people..Accompany with the development of technology of computer and microelectronics.the theory and arithmetic of digital signal processdevelopment quickly,Digital filters are extemsively used in audio and video process,digital communications,frequency analyse,autocontrol and so on.Digital filter is one of the most important part of digital signal process,almost appeared in all digital signal process system.Digital filter is a discrete LIT system can accomplish the signal filter using finite precision arithmetic,with a group of digital signal input(which sampled and measure with analog signals)and another group of changed digital signal output.Digital filter is one of the important contents of digital signal process. Relative to analog filter,the digital filter without excursion,be able to process low frequency signal,the characteristic of frequency response close to ideal value,with high precision.and easy to integrated.These advantages de,de the application of digital filter become more and more extensively.While the developing of DSP (digital signal processor)and FPGA,provide more choice for digital filter. The mostly important task of this paper is researching the basic theories of digital filter,base on the TMS320VC5509 of TI company design digital filter system with high stability and low power consume,accomplish the hardware and software debug.main task as following: (1) Reach the basic theory of digital filter and the method of realize of digital filter,grasp the principle and characteristic of each digital filter. (2) Reach and analyse how to use the simulate software of MATLAB to design the required digital filter.Use several function design some universal digital filter,get the coefficient of digital filter,prepare the prophase task of design a digital filter base onDSP. (3) According to the basic structure and characteristic of spectrum 5000 digital signal processor of TI,make the best of of the resource On chip,combined with simulate software MATLAB,realized a high performance and high stability digital filter Key Words:Digital filter,DSP(Digital Signals Processor),IIR(Infinity Impulse Response),FIR(Finity Impulse Respons)/// II 目录 摘 要 I ABSTRACT II 第1章 绪论 1 1.1数字滤波器的优点 1 1.2数字滤波器的发展动态 1 1.3数字滤波器的实现方法 2 1.4数字滤波器的设计过程 2 1.5论文研究内容 3 1.6本章小结 3 第2章 数字滤波器理论研究 4 2.1数字滤波器概述 4 2.2数字滤波器的设计方法 8 2.3IIR数字滤波器结构 8 2.4 FIR数字滤波器结构 11 2.5IIR与FIR数字滤波器的比较 12 第3章 数字滤波器的计算机辅助设计 14 3.1滤波器的表达方式 14 3.2 IIR滤波器的MATLAB辅助设计 16 3.3 FIR滤波器的MATLAB辅助设计 19 3.4 MATLAB软件数字滤波器仿真结果 21 第4章 数字滤波器的DSP实现 29 4.1 DSP的基本特征 29 4.2 TMS320C55X DSP的硬件结构 30 4.3 DSP系统的设计与开发 32 4.4 FIR滤波器的DSP实现 34 4.5 IIR滤波器的DSP实现 39 第5章 结束语 43 5.1全文总结 43 5.2心得体会 43 5.3工作展望 43 参考文献: 45 专业外文翻译 47 致谢 75 第1章 绪论 1.1数字滤波器的优点 滤波器是指用来对输入信号进行滤波的硬件或软件。如果滤波器的输入、输出都是离散时间信号,则该滤波器的冲激响应也必然离散,这样的滤波器定义为数字滤波器。数字滤波器在数字信号处理的各种应用中发挥着十分重要的作用,它是通过对采样数据信号进行数学运算处理来达到频域滤波的目的。数字滤波器是提取有用信息非常重要、非常灵活的方法,是现代信号处理的重要内容。因而在数字通信、语音图象处理、谱分析、模式识别、自动控制等领域得到了广泛的应用。相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率响应特性可做成非常接近于理想的特性,且精度可以达到很高,容易集成等,这些优势决定了数字滤波器的应用将会越来越广泛。同时DSP(Digital SignalProcessor)处理器的出现和FPGA(Field Programmable Gate Array)的迅速发展也促进了数字滤波器的发展,并为数字滤波器的硬件实现提供了更多的选择。相对于模拟滤波器数字滤波器具有以下显著的优点: 精度高:模拟电路中元件的精度很难达到10。以上,而数字系统17位字长就可以达到105精度。因此在一些精度要求很高的滤波系统中,就必须采用数字滤波器来实现。 灵活性大:数字滤波器的性能主要取决于乘法器的各系数,而这些系数是存放在系统存储器中的,只要改变存储器存放的系数,就可以得到不同的系统,这些都比改变模拟滤波器系统的特性要容易和方便的多,因而具有很大的灵活性。 可靠性高:因为数字系统只有两个电平信号“0”和“1”,受噪声及环境条件的影响小,而模拟滤波器各个参数都有一定的温度系数,易受温度、振动、电磁感应等影响。并且数字滤波器多采用大规模集成电路,大规模集成电路的故障率远比众多分立元件构成的模拟系统的故障率低。 易于大规模集成:数字部件具有高度的规范性,便于大规模集成,大规模生产,且数字滤波器电路主要工作在截止或饱和状态,对电路参数要求不严格,因此产品的成品率高,价格也日趋降低。相对于模拟滤波器,数字滤波器在体积、重量和性能方面的优势已越来越明显。 并行处理:数字滤波器的另外一个最大的优点就是可以实现并行处理,比如数字滤波器可以采用DSP处理器来实现并行处理。TI公司TMS320C5000系列的DSP芯片采用8条指令并行处理的结构,时钟频率为100MHZ的DSP芯片。可高达800M口S(每秒执行百万条指令)。 1.2数字滤波器的发展动态 近些年,线性滤波方法,如Wiener滤波、Kalman滤波和自适应滤波得到了广泛的研究和应用,同时一些非线性滤波方法,如小波滤波、同态滤波、中值滤波、形态滤波等都是现代信号处理的前言课题,不但有重要的理论意义,而且有广阔的应用前景。Wiener滤波是最早提出的一种滤波方法,当信号混有白噪声时,可以在最小均方误差条件下得到信号的最佳估计。但是,由于求解Wiener-Hoff方程的复杂性,使得Wiener滤波实际应用起来很困难,不过Wiener滤波在理论上的意义是非常重要的,利用Wiener滤波的纯一步预测,可以求解信号的模型参数,进而获得著名的Lcvinson算法。Kalman滤波是20世纪60年代初提出的一种滤波方法。与Wiener滤波相似,它同样可以在最小均方误差条件下给出信号的最佳估计。所不同的是,这种滤波技术在时域中采用递推方式进行,因此速度快,便于实时处理,从而得到了广泛的应用。Kalman滤波推广到二维,可以用于图象的去噪。当假设Wiener滤波器的单位脉冲响应为有限长时,可以采用自适应滤波的方法得到滤波器的最佳响应。由于它避开了求解Wiener-Hoff方程,为某些问题的解决带来了极大的方便。小波滤波就是利用信号和噪声的目的。同态滤波主要用于解决信号和噪声之间不是相加而是相乘 关系时滤波问题。另外,当信号和噪声之间为卷积关系的时候,在一定条件下可以利用同态滤波把信号有效地分离开来由同态滤波理论引申出的复时谱也成为现代信号处理中极为重要的概念。Wiener滤波、Kalman滤波和自适应滤波都是线性滤波,线性滤波的最大缺点就是在消除噪声的同时,会造成信号边缘的模糊。中值滤波是20世纪70年代提出的一种非线性滤波方法,它可以在最小绝对误差条件下,给出信号的最佳估计。这种滤波方法的优点,就是能够保持信号的边缘不模糊。另外它对脉冲噪声也有良好的清除作用。形态滤波是建立在集合运算上的一种非线性滤波方法,它除了用于滤除信号中的噪声外,还在图象分析中发挥了重要的作用 1.3数字滤波器的实现方法 数字滤波器的实现方法一般有以下几种: 在通用的计算机(如PC)上用软件(如C语言)实现。软件可以是由自己编写,也可以使用现成的软件包。这种方法的缺点是速度太慢,不能用于实时系统,主要用于DSP算法的模拟与仿真。 在通用的计算机系统中加上专用的加速处理机实现。这种方法不便于系统的独立运行。 用通用的单片机实现。单片机的接口性能良好容易实现人机接口。由于单片机采用的是冯诺依曼总线结构,系统比较复杂,实现乘法运算速度较慢,而在数字滤波器中涉及大量的乘法运算,因此,这种方法适用于一些不太复杂的数字信号处理。 用通用的可编程DSP芯片实现。与单片机相比,DSP有着更适合于数字滤波的特点。它利用改进的哈佛总线结构,内部有硬件乘法器、累加器,使用流水线结构,具有良好的并行特点,并有专门设计的适用于数字信号处理的指令系统等。 用专用的DSP芯片实现。在一些特殊的场合,要求的信号处理速度极高,而通用DSP芯片很难实现,这种芯片将相应的信号处理算法在芯片内部用硬件实现,无须进行编程。 用FPGA等可编程器件来开发数字滤波算法。使用相关开发工具和VHDL等硬件开发语言,通过软件编程用硬件实现特定的数字滤波算法。这一方法由于具有通用性的特点并可以实现算法的并行运算,无论是作为独立的数字信号处理,还是作为DSP芯片的协作处理器都是比较活跃的研究领域。 通过比较这些方法可见:可以采用MATLAB等软件来学习数字滤波器的基本知识,计算数字滤波器的系数,研究算法的可行性,对数字滤波器进行前期的仿真。可以采用DSP或FPGA来实现硬件电路。本论文研究的重点集中在利用DSP来实现数字滤波的硬件电路。 1.4数字滤波器的设计过程 数字滤波器设计过程就是从给定的技术指标开始到以滤波器产品原型的实现而结束的一系列过程,该过程包括四个一般步骤:函数逼近、电路实现、缺陷研究、产品实现。 函数逼近:就是产生满足理想技术指标的转移函数即建立一个目标的数字滤波器模型。通常,首先采用理想的数字滤波器模型,然后利用数字滤波器的设计方法,设计出一个实际滤波器模型来逼近给定的目标。 电路实现:是把滤波器的转移函数转换为方框图(也叫做数字滤波器网络)或转换为一组对输入数字序列进行顺序计算的方程。 缺陷研究:研究各种非理想因素的影响,如存储采样值和系数的有限字长,或在不违反滤波器技术指标的条件下所允许的最大量化步长。 产品实现:用硬件(DSP处理器、专用硬件、常用VLSI芯片)或者在普通计算机、专用计算机或阵列处理器上运行的软件构建滤波器的原型,需要进行的判断如器件的类型和制造方法、数据字长,系数字长等。 通常上述四个步骤互相并不独立,但是一般分别进行,其主要目的是在最短时间内找出最经济的方案。 而基于DSP的数字滤波器的设计过程如下: (1)根据指标确定滤波器的类型,设计出滤波器的函数逼近;(2)根据DSP的特点(字长,精度等)对参数进行取舍、量化,然后进行仿真;(3)根据仿真结果对滤波器的结构、参数再次进行整,直到满足以指标要求为止:(4)在DSP上用语言实现滤波器功能。在上述要求的前提下,找到尽可能简易的实现方法. 定点DSP芯片,既可以做定点运算,也可以做浮点运算。一个算法,既可以用汇编语言编程实现,也可以用高级语言(C,c++)实现。而一个数字滤波器是否可以在DSP上实现,最终要看此算法是否满足两个条件:执行时间和精度。一个算法的精度再高,如果不能做到实时,也没有实用价值:相反,如果执行时间很快,但精度满足不了要求,也就无从实现滤波功能。数字滤波器在DSP上的实现思路,应该是在满足上面两个条件的前提下,找到尽可能简易的实现方法。 1.5论文研究内容 本论文主要:①研究数字滤波的理论知识,为系统整体设计奠定了理论基础:②研究了MATLAB软件在数字信号处理,尤其是数字滤波器处理中的应用,仿真出了几种数字滤波器的基本模;③研究TI公司TMS320VC5509数字信号处理器的内部结构及片上资源,设计一个价格低、功耗小、精度高的数字滤波器系统。④研究有限长冲激响应数字滤波器和无限长冲激响应数字滤波器在DSP中的具体实现方法。编写一套可行的高效的数字滤波器程序⑤研究TI公司DSP系统开发工具的应用,调试系统的硬件平台和程序。 1.6本章小结 本章首先分析了数字滤波器在工业应用中的优点以及数字滤波的研究现状,然后着重对数字滤波器滤波算法的实现方法和实现过程,最后介绍了本论文研究的内容。 第2章 数字滤波器理论研究 2.1数字滤波器概述 数字滤波器是完成信号滤波处理功能的,用有限进度算法实现的离散时间线性非时变系统,其输入是一组数字量,其输出是经过变换的另一组数字量。因此,数字滤波本身既可以是用数字硬件装配成一台完成给定运算的专用的数字计算机,也可以将所需要的运算编程为程序,让通用计算机来执行。信号中一般都包含噪声或者说其中有很多能量在感兴趣的最高频率之外,因此我们要用滤波电路将不感兴趣的带宽之外的信号和噪声移去。数字滤波器是数字信号处理中使用最广泛的一种线性系统环节,图2—1给出了一个具有模拟输入信号和输出信号的实时数据滤波器的简化框图。这个模拟信号被周期地抽样,且转化成一系列数字x(n)(n=0,1…)。数字滤波器依据滤波器的计算算法,执行滤波算法运算、把输入系列x(n)映射到输出系列y(n)。DAC把数字滤波后的输出转化成模拟值,这些模拟值接着被模拟滤波器平滑,并且消去不需要的高频分量 图2-1实时数字滤波器简化框图 在信号处理中,为了防止采样过程中的混叠现象,必须在A/D转换之前使用低通滤波器,把1/2采样频率以上的信号衰减掉。如图2—2所示,在~D转换前,加入一个低通滤波器,这样,经过A/D转换之后,有效地避免了混叠现象的发生,从而保证了后续数字处理的正常迸行 图2-2抗混叠滤波器的作用 在实时数字系统中,要根据实断怙况设定不同的分析频率,即信号分析频率可由用户设定,那么抗混卺滤波的截Jf:频率也要发生变化:L-E/2。可以想象,信号分析系统需要在实时系统需要多少挡分析频率,就需要多少只抗混叠滤波器,这样导致模拟电路的设计十分繁琐,而且要保证每个滤波器参数一致,高精度、线性等困难 随着DSP技术广泛应用,现在逐步采用的技术是:在经过A/D转换之后,采用数字滤波技术满足不同分析频率下信号分析的需要。相应地,A/D转换保持最高转换频率不变,只需要一个模拟抗混叠滤波器,而通过调节数字滤波器参数改变数字滤波器的输出,相当于改变不同的A/D转换频率。如图2--3所示,A/D转换前端时域参数固定的模拟抗混叠滤波器,在A/D转换后使用参数可调的数字滤波器。这样设计筋化了模拟抗混叠滤波器的设计,提高了系统的稳定性和抗干扰性能。 参数固定的模拟 参数可调的 抗混叠滤波器 A_D转换器 数字滤波器 图2-3抗混叠数字滤波器的作用 数字滤波器具有稳定性高、精度高、灵活性大等突出的优点。随着数字技术的发展,用数字技术实现滤波器的功能越来越受到人们的注意和广泛的应用。从数字滤波器的单位冲击响应来看,可咀分为两大类:有限冲击响应(FIR)数字滤波器和无限冲击响应(IIR)数字滤波器。滤波器按功能上分可以分为:低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BSF)。 2.1.1数字滤波器的数学模型 经典数字滤波器是一个线性非时变系统,其数学模型可用Z域系统函数H(z)表示为 sos=b0kb1kb2k⋯⋯⋯b0Lb1Lb2L a0ka1ka2k⋯⋯⋯a0La1La3L (2-1) Hz=Y(z)X(z)=b0+b1z-1+b2z-2+⋯+bNz-N1+a1z-1+a2z-2+⋯+aNz-N=r=0nbzz-r1+k=0Makz-k (2-2) 模型参数为a,b,N,M。a=a1,a2,⋯aN+1,b=b1,b2,⋯bN+1,式中a0通常为1.输出列y(n)和输入列x(n)之间的方差表示为 yn=r=0Nbrxn-r-k=1Maky(n-k) (2-3) 输入和输出之间尉时间域结构框图和z域(离散域)结构框图入图2--4所示。 x(n) 图2-4数字滤波器的结构框图 当ak=0,k=1—M时z域系统函数H(z)只有零点,y=r=0nbrxn-r,其中单位脉冲响应为 hn=yn|xn=bn=r=0Nbrδ(n-r) (2-4) 显然此时当0≤n≤N时h(n)才可能有非零值。当n>N时h(n)的值恒为零也就是说数字滤波器的单脉冲响应有限。通常称这种滤波器为有限冲击响应(Finite Impulse Response,FIR)数字滤波器。 当ak值不完全为零时,z域系统函数H(z)至少包含有一个极点此时单位脉冲响应必定为无限,对于一个稳定的数字系统,z域系统函数H(z)必须在单位圆内部,通常z域系统函数H(z)包含极点的数字滤波器为无限冲击响应(InfiniteImpulse Response,IIR)数字滤波器。 2.1.1.1数字滤波器的性能指标 令z=ejω,由数字滤波器z域系统函数可以得到其频率特性为 Hejω=Hz|z=ejω=Hejωejφ(ω) (2-5) τω=-dφ(ω)dω (2-6) 式中Hejω是数字滤波器的幅频特性;φ(ω)是相频特性;τω是群延迟特性 2.1.1.2数字滤波器的幅频特性 经典数字滤波器从滤波器功能上可分为:低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BSF)。图2—5是理想数字滤波器的幅频特性。 理想数字滤波器通常有通带和阻带两个频带组成,通带和阻带之问的幅频特性产生突变,其单位冲击脉冲h(n)是非因果性的无限长序列,不可实现。为了得到稳定、可实现的数字滤波器非实际数字滤波器的频响通常有通带、阻带和过渡带构成;实际数字滤波器的频响通常有通带、阻带和过渡带构成,并且通带和阻带的幅频特性也不是恒定不变。以低通数字滤波器为例,其典型的实际幅频特性如图2—6所示。图中,αp,是通带内最大衰减;↑ωp是通带内数字相角频率;αs是阻带内最小衰减;ωs是阻带数字相角频率ωp,ωs之间是过渡带。实际应用中,通带、阻带纹波也是常用分贝(dB)表示,且定义 图2-5是理想数字滤波器的幅频特性 图2-6实际低通数字滤波器的典型幅频特性 δp=20lgH(ej0)20lg(1-αp)=-20lg(1-αp) (2-7) φω=β-αωδs=20lgH(ej0)20lg(1-αs)=-20lg(1-αs) (2-8) 总之,αp,αs,ωp,ωs在数字滤波器的设计中非常重要,这几个参数就统称为数字滤波器的技术指标。可以表示为[(通带角频率,通带衰减),(阻带角频率,阻带衰减)],即[ωp,αp,(ωs,αs)]或[ωp,δp,(ωs,δs)] 2.1.1.3数字滤波器的相频特性 设计数字滤波器时,大多数场合只需要考虑满足幅频特性。但是在一些特殊场合(如图象信号处理)对滤波器的相频特性也有严格的要求。主要希望数字滤波器具有线性相位特性,保证不同信号成分的正弦信号通过滤波器后的延迟相同。 线性相位系统的相频特性必须满足 φω=β-αω (2-9) 式中,α和β为常数。 2.2数字滤波器的设计方法 滤波是从分析信号中提取用户需要的信息,滤去不需要的信号成分或干扰信号成分。根据不同的设计要求,以及信号与干扰的不同关系,可以从时域、频域或变换域(同态)进行信号滤波设计。 2.2.1频域数字滤波 所谓频域数字滤波就是要提取或抑制分析信号x(n)中某些频带的信号成分η(n)。在设计频域数字滤波时,要求信号s(n)和被滤出信号η(n)在频域具有可分性。设分析信号x(n)=s(n)+ η(n),其中s(n)为真实信号,η(n)为干扰信号。当s(n)和η(n)的频带相互重叠时,就不可能从频域滤波设计得到真实信号s(n)。x(n)=s(n)*h(n) 2.2.2时域数字滤波 信号分析过程中,真实信号s(n)往往会受到干扰信号加性噪声η(n)的干扰,由于噪声频谱很宽,信号s(n)的频谱和噪声η(n)的频谱肯定会受产生重叠。当信噪比(SNR)较低时,噪声频谱甚至会淹没信号频谱,也就是说,当信号和噪声在频域没有可分性,只能在时域进行滤波设计,根据信号和噪声的统计特性差异将它们分开,常用的设计方法为最小二乘法。 2.2.3同态数字滤波 有时真实信号虽然并没有受到时域加性噪声的干扰,但因为各种原因却产生了畸变。最常见的是乘积性畸变和卷积性畸变,即x(n)=s(n)∙h(n)或x(n)=s(n)*h (n)。从这些畸变信号x(n)中滤出真实信号的过程称为同态滤波。 在频域、时域和同态滤波器设计中,频域滤波设计属于经典数字滤波范畴,时域和同态滤波设计属于现代滤波设计范畴。 2.3IIR数字滤波器结构 Hz=r=0Mbrz-r1-k=0Nakz-k (2-10) 对应的差分方程为: yn=r=0Mbrxn-r+k=1Naky(n-k) (2-11) 其中y(n)由两部分构成:第一部分r=0Mbrxn-r是一个对输入x(n)的M节延时链结构,每节延时抽头后加权相加:第二部分k=1Naky(n-k))是一个对Y(n)的延时抽头后加权相加,因此是一个反馈网络,这种结构称为直接型,如图2-7所示 图2-7直接型I结构方框图 将上式改写为(当M=N的情况): HZ=Y(z)X(z)=Y(z)W(z)∙W(z)X(z)=(r=0Nbrz-r)11-k=1Nakz-k (2-12) 由此H(z)可视为分予多项式r=0Nbrz-r与分母多项式1-k=1Nakz-k的倒数所构成的两个子系统函数的乘积,这相应于两个子系统的级联。其中第一子系统实现零点为: H1z=Y(z)W(z)=r=0Nbrz-r (2-13) 故得: Yz=r=0Nbrz-rW(z) (2-14) 其时域表示为: yn=r=0Nbrw(n-r) (2-15) 第二子系统实现级点为: H2z=W(z)X(z)=11-k=1Nakz-k (2-16) 整理以后可得: Wz=Xz+k=1Nakz-kW(z) (2-17) 其时域表示为: wn=xn+k=1Nakw(n-k) (2-18) 综上说述可以得到如图2—8的实现结构 图2-8直接型I的变形结构方框图 如果将图2-8中相同输出的延迟单元合并成一个,则得到如图2-9所示的结构图,它比上图的延迟单元少了一倍,N阶滤波器只需要N级延迟单元,这是实现N阶滤波器所必须的最少数量的延迟单元。这种结构称为直接型II,有时将直接型I简称为直接型,将直接型lI称为典型型式 图2-9直接型II结构方框图 线性信号流图理论中有许多运算处理方法,可以在保持输入和输出之间的传输关系不变的情况下,将信号流图变换成各种不同的形式。其中流图转置的方法可导出一种转置滤波器结构,具体地讲,就是把网络中所有支路的方向都颠倒反向,且输入输出的位置互相调换一下。对于单输入输出系统来说,倒转后的结构和原结构的系统函数相同,但对有限字长而言,转置结构与原结构性质不同。 直接型I、II结构的优点是简单直观。它们的共同缺点是:系数ak、b,对滤波器性能的控制关系不直接,因此调整不方便。更严重的是这种结构的极点位置灵敏度太大,对字长效应太敏感,容易出现不稳定现象,产生较大误差。 由于直接型结构存在上述缺点,因此一般采用以下结构更具有优越性。将式中的分子分母表达为因子的形式,即: Hz=r=0Mbrz-r1-k=1Nakz-k=Ar=1M1-crz-1k=1N1-drz-1 (2-19) 式中A为归一化常数。由于系统函数H(z)的系数ak、br都是实系数,故零、cr、dr只有两种情况:或者是实根,或者是共轭复根。即 Hz=Ai=1M1(1-giz-1)i=1M21-hiz-1(1-hiz-1)i=1N1(1-piz-1)i=1N21-qiz-1(1-qiz-1) (2-20) 式中M=M1+2M2,N=N1+2N2,gi表示实零点,pi表示实极点 2.4 FIR数字滤波器结构 有限长单位脉冲响应滤波器的系统函数为: Hz=n=0N-1h(n)z-n (2-21) 其差分方程为: yn=k=0N-1hkx(n-k) (2-22) 其基本结构型式有以下几种: 由上式可以得出如下图2-10所示的直接型结构,这种结构又可以称为卷积型结构。 图2-9 FIR滤波器直接型结构图 将转置理论应用于上图可以得到图(2—5)所示的转置直接型结构 图2-10 FIR滤波器转置结构图 将式中的系统函数H(z)分解成若干一阶和二阶多项式的连乘积: Hz=k=1M1H1k(z)k=1M2H2k(z) (2-33) 则可构成如图2-11所示的级联型结构。其中H1kz=a0k(1)+a1k(1)z-1为一阶节;H2kz=a0k(2)+a1k(2)z-1+a2k(2)z-2为二阶节。每个一阶节、二阶节可用上图所示的直接型结构实现。当M1=M2=1时,即可得到下图(b)所示的具体结构。这种结构的每一节都便于控制零点,在需要控制传输零点时可以采用。但是它所需要的系数a比直接型的h(n)多,所需要的乘法运算也比宜接型多。 (a)级联型结构框图 (b)级联型结构框图 图2-11 FIR级联型结构构成 2.5IIR与FIR数字滤波器的比较 IlR滤波器系统函数的极点可以位于单位圆内的任何地方,因此可以用较低的阶数获得高选择性,所用存储单元少,经济而效率高。但这些是以相位的非线性为代价的。选择性越好,则相位非线性越严重。相反,FIR滤波器却可以得到严格的线性相位,然而由于FIR滤波器系统函数的极点固定在原点,所以只能用较高的阶数达到高选择性,对于同样的滤波器设计指标,FIR滤波器所要求的阶数可以比IIR滤波器高5—10倍,成本较高,信号延时也较大。如果按相同的选择性和相同的线性相位要求来说,则IIR滤波器就必须加全通网络进行相位校正,同样要大大增加滤波器的节数和复杂性 FIR滤波器可以用非递归方法实现,有限精度的计算不会产生振荡。同时由于量化舍入以及系数的不准确所引起的误差的影响比IIR滤波器要小得多。显然对fIR滤波器必须留心稳定性问题,注意极点是否会位于单位圆之外,另外有限字长效应有时会引起寄生振荡。再者FIR滤波器可采用n叮算法,在相同阶数下,运算速度可以快得多14J。 IIR滤波器可以借助于模拟滤波器的成果,一般都有有效的封闭式设计公式可供准确计算,计算工作量比较小,对计算工具要求不高。FIR滤波器没有现成设计公式。窗函数法仅仅可以给出窗函数的计算公式,但计算通、阻带衰减仍无显式表达式、其他大多数设计FIR滤波器的方法都需要借助计算机辅助设计。 IlR滤波器设计法,主要是设计规格化的,频率特性为分段常数的滤波器,而FIR滤波器则易于适应某些特殊应用,如构成微分器或积分器,或用于巴特渥斯、切比雪夫等逼近不可能达到预定指标的情况,例如由于某些原因要求三角形振幅响应 第3章 数字滤波器的计算机辅助设计 数字滤波器用硬件实现的基本部件包括延迟器、乘法器和加法器;如果用软件来实现时,它即是一段线性卷积程序。软件实现的优点是系统函数具有可变性,仅依赖于算法结构,并且易于获得较理想的滤波性能,所以软件滤波在滤波器的使用中起到了越来越重要的作用。各种高级语言在设计和实现滤波器当中都有一整套成熟的程序组,在使用这些程序时让使用者感到头痛的是它们冗长的程序和修改参数的不方便,特别是滤波器各种表达式和滤波器各种形式相互之间的转换,显得十分复杂。滤波器软件的设计和实现在信号处理软件设计和使用当中占有十分重要的地位和作用。 MATLAB的信号处理工具箱的两个基本组成就是滤波器的设计和实现以及频谱分析。工具箱提供了丰富而简单的设计、实现FIR和IIR的方法,使原来繁琐的程序设计简化成函数的调用,特别是滤波器的表达方式和滤波器形式之间的相互转换显得十分简便,为滤波器的设计和实现开辟了一片广阔的天地。IIR与FIR滤波器不论是在性能上还是在设计方法上都有很大的区别。FIR滤波器可以对给定的频率特性直接设计,而IIR滤波器目前最通用的方法是利用已成熟的模拟滤波器的设计方法来进行设计。不管是IIR还是FIR滤波器的设计都包括以下三个步骤:给出所需要的滤波器的技术指标;设计一个H(z)使其逼近所需要的技术指标:实现所设计的H(z) 3.1滤波器的表达方式 在线性系统理论中,系统表示一般常用的数学模型包括有:传递函数模型(系统外部模型)、状态方程模型(系统内部模型)和零极点增益模型等。这些数学模型之间有着内在的等效关系,使用在不同场合有其各自的优势。 3.1.1滤波器的传递函数模型 一个线一睦时不变(LTI)数字滤波器可以用以下的长系数线性差分方程来表一个线一睦时不变(LTI)数字滤波器可以用以下的长系数线性差分方程来表不: yn=i=1Maix(n-i)i=1Nbiy(n-i) (3-1) 式中x(n)和y(n)分别表示输入和输出信号序列,ai和bi以是滤波器系数。当式中bi系数全为零时,即: yn=i=1Maix(n-i)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字滤波器 dsp 实现 毕业论文
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文