第四章计量经济学-多元线性回归.pptx
《第四章计量经济学-多元线性回归.pptx》由会员分享,可在线阅读,更多相关《第四章计量经济学-多元线性回归.pptx(48页珍藏版)》请在咨信网上搜索。
第四章第四章 多元线性回归模型多元线性回归模型问题的提出*现实生活中引起被解释变量变化的因素并非仅只一个解释变量,可能有很多个解释变量。例如,产出往往受各种投入要素资本、劳动、技术等的影响;销售额往往受价格和公司对广告费的投入的影响等。*所以在一元线性模型的基础上,提出多元线性模型解释变量个数=2第一节第一节 多元线性回归模型多元线性回归模型 第二节第二节 多元线性回归模型的参数估计多元线性回归模型的参数估计第三节第三节 多元线性回归模型的统计检验多元线性回归模型的统计检验第四节第四节 多元线性回归模型的其他函数多元线性回归模型的其他函数形式形式4.1 多元线性回归模型多元线性回归模型 一、多元线性回归模型一、多元线性回归模型 二、多元线性回归模型的基本假定二、多元线性回归模型的基本假定 一、多元线性回归模型一、多元线性回归模型 多元线性回归模型多元线性回归模型:表现在线性回归模型中的解释变量有多个。一般表现形式一般表现形式:i=1,2,n其中:k为解释变量的数目,j称为回归参数回归参数(regression coefficient)。是因变量对自变量偏导数。习习惯惯上上:把常常数数项项看成为一虚虚变变量量的系数,该虚变量的样本观测值始终取1。这样:模型中解释变量的数目为(模型中解释变量的数目为(k+1+1)取 n 个观察值,i=1,2,n,得 n 个方程 方程表示:方程表示:各变量各变量X X值固定时值固定时Y Y的平均响应的平均响应。j也也被被称称为为偏偏回回归归系系数数,表表示示在在其其他他解解释释变变量量保保持持不不变变的的情情况况下下,Xj每每变变化化1个个单单位位时时,Y的的均值均值E(Y)的变化的变化;或或者者说说j给给出出了了Xj的的单单位位变变化化对对Y均均值值的的“直直接接”或或“净净”(不含其他变量)影响。(不含其他变量)影响。总体回归模型总体回归模型n个随机方程的个随机方程的矩阵表达式矩阵表达式为为 其中其中样本回归函数样本回归函数:用来估计总体回归函数:用来估计总体回归函数其其随机表示式随机表示式:ei称为称为残差残差或或剩余项剩余项(residuals),可看成是总,可看成是总体回归函数中随机扰动项体回归函数中随机扰动项 i的近似替代。的近似替代。样本回归函数样本回归函数的的矩阵表达矩阵表达:其中:其中:二、多元线性回归模型的基本假定二、多元线性回归模型的基本假定 假设1,解释变量是非随机的或固定的,且各X之间互不相关(无多重共线性)。假设2,随机误差项具有零均值、同方差及不序列相关性 假设3,解释变量与随机项不相关 假设4,随机项满足正态分布 维恩图12345上述假设的上述假设的矩阵符号表示矩阵符号表示 式:式:假设1,n(k+1)矩阵X是非随机的,且X的秩=k+1,即X满秩。假设2,假设3,E(X)=0,即 第二节第二节 多元线性回归模型的估计多元线性回归模型的估计 估计方法:OLS一、普通最小二乘估计一、普通最小二乘估计 二、参数估计量的性质二、参数估计量的性质三、样本容量问题三、样本容量问题四、多元线性回归模型的参数估计实例四、多元线性回归模型的参数估计实例 一、普通最小二乘估计一、普通最小二乘估计对于随机抽取的n组观测值如果样本函数样本函数的参数估计值已经得到,则有:i=1,2n根据最小二乘原理最小二乘原理,参数估计值应该是下列方程组的解 其中于是得到关于待估参数估计值的正规方程组正规方程组:正规方程组正规方程组的矩阵形式矩阵形式即由于XX满秩,故有 对上述方程两边同乘观察值距阵 X 的转置距阵注:关注教材P73页推导过程 *最大似然估计最大似然估计 对于多元线性回归模型易知 Y的随机抽取的n组样本观测值的联合概率即为变量Y的或然函数或然函数 对数或然函数为对对数或然函数求极大值,也就是对 求极小值。因此,参数的最大或然估计最大或然估计为为结果与参数的普通最小二乘估计相同结果与参数的普通最小二乘估计相同*矩估计矩估计(Moment Method,MM)OLS估计是通过得到一个关于参数估计值的正正规方程组规方程组并对它进行求解而完成的。该该正规方程组正规方程组 可以从另外一种思路来导:求期望:称为原总体回归方程的一组矩条件矩条件,表明了原总体回归方程所具有的内在特征。由此得到正规方程组正规方程组 解此正规方程组即得参数的MM估计量。易知MM估计量与与OLS、ML估计量等价。矩方法矩方法是是工具变量方法工具变量方法(Instrumental Variables,IV)和和广义矩估计方法广义矩估计方法(Generalized Moment Method,GMM)的基础的基础 在在矩方法矩方法中关键是利用了中关键是利用了 E(X)=0 如果某个解释变量与随机项相关,只要能找到1个工具变量,仍然可以构成一组矩条件。这就是IV(工具变量在这里可以理解为替代变量)。如果存在k+1个变量与随机项不相关,可以构成一组包含k+1方程的矩条件。这就是GMM。例:例:某公司的企业管理费主要取决于两种重点产品的产量,试估计企业管理费线性回归模型。可求得:于是 回归模型为:二、参数估计量的性质二、参数估计量的性质 在满足基本假设的情况下,其结构参数 的普通最小二乘估计、最大或然估计最大或然估计及矩估计矩估计仍具有:线性性线性性、无偏性无偏性、有效性有效性。同时,随着样本容量增加,参数估计量具有:渐近无偏性、渐近有效性、一致性渐近无偏性、渐近有效性、一致性。1、线性性、线性性 其中,C=(XX)-1 X 为一仅与固定的X有关的行向量 2、无偏性、无偏性 这里利用了假设:E(X)=0 3、有效性(最小方差性)、有效性(最小方差性)其中利用了 和 三、样本容量问题三、样本容量问题 所谓“最小样本容量最小样本容量”,即从最小二乘原理和最大或然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。最小样本容量最小样本容量 样本最小容量必须不少于模型中解释变量样本最小容量必须不少于模型中解释变量的数目(包括常数项)的数目(包括常数项),即 n k+1因为,无多重共线性要求:秩(X)=k+1 2 2、满足基本要求的样本容量、满足基本要求的样本容量 从统计检验的角度从统计检验的角度:n30 时,Z检验才能应用(大样本使用);n-k8时,t分布较为稳定 一般经验认为一般经验认为:当n30或者至少n3(k+1)时,才能说满足模型估计的基本要求。模型的良好性质只有在大样本下才能模型的良好性质只有在大样本下才能得到理论上的证明得到理论上的证明 四、多元线性回归模型的参数估计实例四、多元线性回归模型的参数估计实例 例例 前章已建立了中国居民人均消费中国居民人均消费一元线性模型。这里我们再考虑建立多元线性模型。解释变量:解释变量:人均GDP:GDPP 前期消费:CONSP(-1)估计区间估计区间:19792000年Eviews软件估计结果 第三节 多元线性模型的统计检验 一、拟合优度检验 TSS =(Yi-Y)2=(Yi2-2 Y Yi+Y 2)=Yi2-nY 2 =YY-nY 2 ESS =(Yi-Y)2-e2 =(YY-nY 2)-(YY-BXY)=BXY-n Y 2R2校正样本决定系数:?R2=1-(1-R2)(n-1)(n-k-1)可决系数可决系数该统计量越接近于1,模型的拟合优度越高。问题:问题:在应用过程中发现,如果在模型中增加一个解释变量,R2往往增大(Why?)这就给人一个错觉一个错觉:要使得模型拟合得好,只要使得模型拟合得好,只要增加解释变量即可要增加解释变量即可。但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整需调整。调整的可决系数调整的可决系数(adjusted coefficient of determination)在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方将残差平方和与总离差平方和分别除以各自的自由度,以剔和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响除变量个数对拟合优度的影响:其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。*赤池信息准则和施瓦茨准则赤池信息准则和施瓦茨准则 为了比较所含解释变量个数不同的多元回归模型的拟合优度,常用的标准还有:赤池信息准则赤池信息准则(Akaike information criterion,AIC)施瓦茨准则施瓦茨准则(Schwarz criterion,SC)这两准则均要求这两准则均要求仅当所增加的解释变量能够减少仅当所增加的解释变量能够减少AICAIC值或值或ACAC值时才在原模型中增加该解释变量值时才在原模型中增加该解释变量。二、相关系数检验 样本决定系数与样本相关系数是两个不同的概念。样本决定系数是对变量 Y 与 X 作回归分析得出的,它是判定回归方程与样本观察值拟合优度的一个数量指标。样本相关系数是对变量 Y 与 X 作相关分析得出的,它是判定 Y 与 X 线性相关密切程度的一个数量指标。样本决定系数与样本相关系数在计算上是一致的。-1 r +1 三、总体回归方程的显著性检验(F检验)H0:b0=b1=bk=0;H1:bi 不全为 0;离差名称平方和自由度回归平方和剩余平方和总体平方和kn-k-1n-1k-自变量的个数n-样本个数F统计量与R2的关系 四、估计参数的显著性检验(t 检验)t 检验是检验自变量 Xi 对因变量 Y 线性作用是否显著的一种统计检验。H0:bi=0;H1:bi 0;=t(n-k-1)S(bi)Tbi比较|T|与 ta的大小2|T|ta 拒绝 H02例:例:某公司的企业管理费主要取决于两种重点产品的产量,试估计企业管理费线性回归模型。可求得:于是 回归模型为:五、对多个回归系数联合检验过程:对模型做无约束与约束的回归,得到相应的残差平方和与R平方;利用上述结果设计统计量F;对F进行检验注:对模型总体检验的F检验是这里F统计量的特例。EVIEWS实现模型估计;在结果中点View/Coefficient Tests/Wald-coefficient Restrictions进行参数约束设定(虚假设);点击OK,出现结果,根据F值与其概率进行判断。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 计量 经济学 多元 线性 回归
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文