第四章-种群及其基本特征.pdf
《第四章-种群及其基本特征.pdf》由会员分享,可在线阅读,更多相关《第四章-种群及其基本特征.pdf(94页珍藏版)》请在咨信网上搜索。
1、第四章第四章第四章第四章 种群及其基本特征种群及其基本特征种群及其基本特征种群及其基本特征第二部分第二部分第二部分第二部分 种群生态学种群生态学种群生态学种群生态学4.1 4.1 种群种群种群种群PopulationPopulation的概念的概念的概念的概念 在同一时期内占有一定空间的同种生物个体的集合。在同一时期内占有一定空间的同种生物个体的集合。是同种个体通过种内关系组成的具有一定程度自我调节机制的有机单元。是同种个体通过种内关系组成的具有一定程度自我调节机制的有机单元。物种存在物种存在的基本单位,物种以种群的形式出现而不是以个体的形式出现。的基本单位,物种以种群的形式出现而不是以个体的
2、形式出现。物种进化物种进化的基本单位,物种的进化过程表现为种群基因频率从一个世代到另一个世代的变化过程。的基本单位,物种的进化过程表现为种群基因频率从一个世代到另一个世代的变化过程。生物群落生物群落的基本组成单位,群落由不同物种的种群组成。的基本组成单位,群落由不同物种的种群组成。具有个体所没有的属性:出生率、死亡率具有个体所没有的属性:出生率、死亡率/存活率、年龄分布、性比、种内社群结构等。存活率、年龄分布、性比、种内社群结构等。单体生物单体生物(unitary organism)如:哺乳类、鸟类、两栖类、昆虫如:哺乳类、鸟类、两栖类、昆虫构件生物构件生物(modular organism)
3、如:多数植物、海绵、珊瑚、水螅如:多数植物、海绵、珊瑚、水螅种群可以由单体生物和构件生物组成种群可以由单体生物和构件生物组成自然种群的自然种群的自然种群的自然种群的3 3个基本特征:个基本特征:个基本特征:个基本特征:数量特征 数量特征 种群数量大小受四个种群参数的影响(出生率、死亡率、迁入率和迁出率)。种群数量大小受四个种群参数的影响(出生率、死亡率、迁入率和迁出率)。种群的数量随时间和空间而变动,即种群动态。种群的数量随时间和空间而变动,即种群动态。空间特征 空间特征 种群具有一定的分布范围(虽然很多种群的分布界限并不十分固定),小尺度的内分布格局和大尺度的地理分布。种群具有一定的分布范围
4、(虽然很多种群的分布界限并不十分固定),小尺度的内分布格局和大尺度的地理分布。遗传特征 遗传特征 种群由彼此可进行杂交的同种个体组成,每个个体都携带一定的基因组合,因此,种群具有一定的基因组成,即系一个基因库种群由彼此可进行杂交的同种个体组成,每个个体都携带一定的基因组合,因此,种群具有一定的基因组成,即系一个基因库gene pool,以区别于其他物种,但基因组成同样是处于变动之中。,以区别于其他物种,但基因组成同样是处于变动之中。种群生态学种群生态学population ecology 研究种群的数量、分布以及种群与其栖息环境中的非生物因素和其他生物种群(如捕食者与猎物)之间的相互作用,种群
5、的数量变动规律及其调节机制是种群生态学的核心。研究种群的数量、分布以及种群与其栖息环境中的非生物因素和其他生物种群(如捕食者与猎物)之间的相互作用,种群的数量变动规律及其调节机制是种群生态学的核心。种群遗传学种群遗传学population genetics 研究种群的遗传过程,包括遗传变异、选择、基因流、突变和遗传漂变等。研究种群的遗传过程,包括遗传变异、选择、基因流、突变和遗传漂变等。4.2 4.2 种群动态种群动态种群动态种群动态 population dynamics population dynamics 数量在时间和空间上的变动规律数量在时间和空间上的变动规律数量在时间和空间上的变动
6、规律数量在时间和空间上的变动规律有多少?(大小和密度)在哪里,哪里多,哪里少?(分布)怎样变动?(数量变动、扩散迁移)为什么这样变动?(种群调节)有多少?(大小和密度)在哪里,哪里多,哪里少?(分布)怎样变动?(数量变动、扩散迁移)为什么这样变动?(种群调节)4.2.1 4.2.1 种群的密度和分布种群的密度和分布种群的密度和分布种群的密度和分布4.2.1.1 种群的大小和密度种群的大小和密度大小大小(size)一定区域种群的个体数量一定区域种群的个体数量number、生物量、生物量biomass或能量。或能量。(绝对)密度(绝对)密度(density)单位面积、单位体积或单位生境中个体的数量
7、。单位面积、单位体积或单位生境中个体的数量。相对密度相对密度(relative density)表示密度数量高低的相对指标。如:渔业统计中常采用单位捕捞力量的渔获量(尾数或生物量)。表示密度数量高低的相对指标。如:渔业统计中常采用单位捕捞力量的渔获量(尾数或生物量)。4.2.1.2 4.2.1.2 种群的数量统计种群的数量统计种群的数量统计种群的数量统计估计种群密度的常用方法:估计种群密度的常用方法:样方取样法(样方取样法(quadrat sampling method)以抽取样本以抽取样本sample来估计总体来估计总体population的统计方法的统计方法 标记重捕法(标记重捕法(mar
8、king-recapture method)在调查区域中,捕获一部分个体进行标志,然后放回原来的自然环境,经过一段时间后再进行重捕。在调查区域中,捕获一部分个体进行标志,然后放回原来的自然环境,经过一段时间后再进行重捕。假定重捕取样中标记比例与样地总数中标记比例相等,来估计样地中被调查动物的数量假定重捕取样中标记比例与样地总数中标记比例相等,来估计样地中被调查动物的数量 N:M=n:mM,标记数;标记数;n:重捕个体数;重捕个体数;m:重捕中标记数;重捕中标记数;N:样地个体总数样地个体总数Transect 38 Quadrats进行抽样时,需要确定理论抽样数(样本大小)。一般来说,理论抽样数
9、的多少依赖以下三个因素:空间分布型,种群的聚集度越高,所需抽样数越多;置信水平和允许误差:置信水平越高、允许误差越小,所需的抽样数越多进行抽样时,需要确定理论抽样数(样本大小)。一般来说,理论抽样数的多少依赖以下三个因素:空间分布型,种群的聚集度越高,所需抽样数越多;置信水平和允许误差:置信水平越高、允许误差越小,所需的抽样数越多;种群密度:当聚集度、置信水平和允许误差相同时,种群密度越高,需抽取的样本数越少。种群密度:当聚集度、置信水平和允许误差相同时,种群密度越高,需抽取的样本数越少。4.2.1.3 种群的空间结构 种群的空间结构 内分布型内分布型(internal distributio
10、n pattern)or 种群内散布种群内散布(intra-population dispersion)组成种群的个体在其生活空间中的位置状态或布局。组成种群的个体在其生活空间中的位置状态或布局。种群的种群的种群的种群的3 3 种内分布型种内分布型种内分布型种内分布型成群分布成群分布/传染分布传染分布Clumped/Contagious均匀分布均匀分布/规则分布规则分布Uniform/Regular随机分布随机分布RandomRandomRandomRegularRegularClumpedClumpedS2/m=0 均匀分布-拟合正二项分布S2/m=1 随机分布-拟合泊松分布S2/m 1 成
11、群分布-拟合负二项分布内分布型的检验指标内分布型的检验指标散布指数散布指数 index of dispersion=方差方差/平均数比率平均数比率 variance to mean ratio(I=s2/m)算术平均数算术平均数 m=x/n方差方差 s2=(x-m)2/(n-1)=(x2)-(x)2/n/(n-1)=(x2)-mx /(n-1)x,样方中个体出现的频率或存在的个数;,样方中个体出现的频率或存在的个数;n,样本总数。,样本总数。内分布型的卡方检验:内分布型的卡方检验:具有具有n-1自由度的卡方的近似值自由度的卡方的近似值 2=I(n-1)=s2(n-1)/m 2 的的5%的显著水
12、平,如果的显著水平,如果 2值介于显著水平之间,则与泊松分布一致在值介于显著水平之间,则与泊松分布一致在95%的概率水平上是可以接受的。的概率水平上是可以接受的。Poisson seriesRANDOM传染分布规则分布随机分布传染分布规则分布随机分布例例1A:用一个面积为:用一个面积为0.05m2的正方形取样器在一石底溪流随机采取的正方形取样器在一石底溪流随机采取11个底栖样方,对每一个样方中的一种蜉蝣类个底栖样方,对每一个样方中的一种蜉蝣类mayfly记数并获得以下值:记数并获得以下值:x=14,15,12,7,8,14,11,14,10,9,10 x=124,(x2)=1472,n=11(
13、n 0.05),因此,这种蜉蝣类在溪流底部可能是随机分布的,即其种群的散布是随机的。,因此,这种蜉蝣类在溪流底部可能是随机分布的,即其种群的散布是随机的。例例1B:x=98,22,72,214,67m=94.60,s2=5202.80,n=5(n 31,小样本)小样本)2=s2(n-1)/x=5202.80 4/94.60=219.99该该 2值明显位于值明显位于5%显著水平之上,因此泊松分布在显著水平之上,因此泊松分布在95%的概率水平被拒绝(的概率水平被拒绝(,随机分布的零假设被拒绝随机分布的零假设被拒绝(P 31),m=10.1250,s2=8.5918,自由度自由度 v=n-1=79。
14、2=s2(n-1)/m=8.5918 79/10.1250=67.0373因为这是一个大样本,便可计算出标准正态变量因为这是一个大样本,便可计算出标准正态变量d(具零平均数和单位标准差)具零平均数和单位标准差)d=2 2-2v-1=134.0746-157=11.580-12.530=-0.950该该d 的绝对值小于的绝对值小于1.96,则与泊松分布一致在则与泊松分布一致在95%的概率水平的概率水平(P 0.05)是可以接受的,随机分布的零假设没有被拒绝。是可以接受的,随机分布的零假设没有被拒绝。例例2B:n=80(n31,大样本大样本),m=5.3125,s2=13.534,自由度自由度 v
15、=n-1=79。2=s2(n-1)/m=13.534 79/5.3125=201.2585由于这是个大样本,正态变量由于这是个大样本,正态变量d 可按下式计算:可按下式计算:d=2 2-2v-1=201.2585-157=+7.532该该d 的绝对值大于的绝对值大于1.96,则与泊松分布一致在则与泊松分布一致在95%的概率水平被拒绝的概率水平被拒绝(P 1.96)表明该种群是成群分布的(若表明该种群是成群分布的(若d 1,种群上升;种群上升;R0=1,种群稳定;种群稳定;0R01,种群下降;种群下降;R0=0,雌性无生殖,种群在下一代死亡。雌性无生殖,种群在下一代死亡。2.连续增长:连续增长:
16、世代重叠的种群,在任何时候,种群中都存在不同年龄的个体世代重叠的种群,在任何时候,种群中都存在不同年龄的个体连续增长模型,微分方程连续增长模型,微分方程dt 时间内种群的瞬时出生率为时间内种群的瞬时出生率为b,死亡率为死亡率为d,种群大小为种群大小为N,种群的每员增长率种群的每员增长率r=b-d,它与种群密度无关它与种群密度无关,也即内禀增长率也即内禀增长率dN/dt=(b-d)N=rN,积分式为积分式为Nt=N0ert,lg Nt=lgN0+rt lged dN N/d/dt t=rNrN 该方程可以解读为:该方程可以解读为:种群大小种群大小 =每个个体对种每个个体对种 种群中的种群中的 的
17、变化率的变化率 群增长的贡献群增长的贡献 个体数个体数 r 表达的是在表达的是在“每个个体基础上每个个体基础上”种群增长种群增长(或下降或下降);增长速度增长速度(dN/dt)与种群大小与种群大小(N)成正比。成正比。以以 Nt 对时间对时间t 作图,曲线呈作图,曲线呈“J”字型,这样的增长称指数式增长字型,这样的增长称指数式增长(exponential growth)。以以lgNt对时间对时间t 作图,则变为直线方程。作图,则变为直线方程。lg Nt=lgN0+rt lge 几何级数和指数增长曲线可以是完全一样的;两种增长模式之间存在直接对应关系:几何级数和指数增长曲线可以是完全一样的;两种
18、增长模式之间存在直接对应关系:R0=er;r=lnR0几何级数增长和指数增长都可以描述正在增长或下降的种群几何级数增长和指数增长都可以描述正在增长或下降的种群可根据指数增长模型来估计非密度制约性种群数量的加倍时间可根据指数增长模型来估计非密度制约性种群数量的加倍时间倍增时间。倍增时间。Nt=N0ert,Nt=2N0,ert=2,ln2=rt,t=0.69315/r4.2.3.2 4.2.3.2 与密度有关的种群增长模型与密度有关的种群增长模型与密度有关的种群增长模型与密度有关的种群增长模型/种群的有限增长种群的有限增长种群的有限增长种群的有限增长density-dependent growth
19、density-dependent growth该模型中的两点假设:有一个该模型中的两点假设:有一个环境容量环境容量 K(carrying capacity)增长率随密度上升而降低的变化是按比例的按此两点假设,密度制约导致增长率随密度上升而降低的变化是按比例的按此两点假设,密度制约导致 r 随密度增加而降低随密度增加而降低,种群增长曲线为种群增长曲线为S型,特点:型,特点:曲线渐近于曲线渐近于K,即,即平衡密度平衡密度equilibrium density;曲线上升是平滑的。曲线上升是平滑的。逻辑斯谛方程逻辑斯谛方程逻辑斯谛方程逻辑斯谛方程 logistic equationlogistic
20、equationdN/dt=r N(1-N/K),其积分式为:,其积分式为:Nt=K/(1+ea-rt)参数参数a取决于取决于N0,表示曲线对原点的相对位置表示曲线对原点的相对位置;r 表示物种的潜在增殖能力或内禀增长率;表示物种的潜在增殖能力或内禀增长率;K是环境容纳量,即物种在特定环境中的平衡密度是环境容纳量,即物种在特定环境中的平衡密度0 2 4 6 8 10 12 14 16 18 207.5 6.0 4.53.01.5种群大小种群大小时间时间环境容纳量环境容纳量K饱和期减速期转折期加速期开始期饱和期减速期转折期加速期开始期S-型种群增长曲线型种群增长曲线“S”型逻辑斯谛增长方程为”J
21、”型指数增长方程乘以一个密度制约因子密度制约因子(1-N/K),它描述了在种群密度与增长率之间,存在着负反馈机制,这是一种十分明显的密度制约作用。dN/dt=r N(1-N/K)该方程可以解读为:该方程可以解读为:种群种群 当当N接近接近0时时 种群种群 因拥挤引起因拥挤引起 增长率增长率 的内禀增长率的内禀增长率 大小大小 的增长下降的增长下降4.2.4 4.2.4 自然种群的数量变动自然种群的数量变动自然种群的数量变动自然种群的数量变动 J型增长型增长 S型增长型增长 两者之间过渡类型两者之间过渡类型(1)种群增长种群增长生活在玫瑰上的成体蓟马种群数量的季节变化生活在玫瑰上的成体蓟马种群数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 种群 及其 基本特征
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。