24223直线与圆的位置关系——切线长定理.pptx
《24223直线与圆的位置关系——切线长定理.pptx》由会员分享,可在线阅读,更多相关《24223直线与圆的位置关系——切线长定理.pptx(25页珍藏版)》请在咨信网上搜索。
50 1 1、如何过、如何过OO外一点外一点P P画出画出OO的切线?的切线?2 2、这样的切线能、这样的切线能画出画出几条?几条?如下左图,如下左图,借助三角板,我们可以画出借助三角板,我们可以画出PAPA是是OO的切线的切线。3 3、如果、如果P=50,P=50,求求AOBAOB的度数的度数130画一画画一画 O。ABP思考思考:已画出切线已画出切线PA、PB,A、B为切点,则为切点,则OAP=,连接连接OP,可知,可知A、B 除了在除了在 O上,上,还在怎样的圆上还在怎样的圆上?90如何用圆规和直尺作出这两条切线呢?如何用圆规和直尺作出这两条切线呢?尺规作图:过尺规作图:过 O外一点作外一点作 O的的切线切线O PABO在经过圆外一点的切线上,这一在经过圆外一点的切线上,这一点和切点之间的线段的长叫做点和切点之间的线段的长叫做这这点到圆的切线长点到圆的切线长OPAB切线切线与与切线长切线长是一回事吗?是一回事吗?它们有什么区别与联系呢?它们有什么区别与联系呢?切线和切线长是两个不同的概念:切线和切线长是两个不同的概念:1、切线是一条与圆相切的、切线是一条与圆相切的直线直线,不能度量;,不能度量;2、切线长是、切线长是线段线段的长,这条线段的两个端点分的长,这条线段的两个端点分别是圆外一点和切点,可以度量。别是圆外一点和切点,可以度量。OPAB比一比比一比 OABP思考思考:已知已知 O切线切线PA、PB,A、B为切点,为切点,把圆沿着直线把圆沿着直线OP对折对折,你能发现什么你能发现什么?12折一折折一折请证明你所发现的结论。请证明你所发现的结论。APOBPA=PBOPA=OPB证明:证明:PAPA,PBPB与与O O相切,点相切,点A A,B B是切点是切点 OAPAOAPA,OBPBOBPB 即即OAP=OBP=90 OA=OB,OP=OP RtAOPRtBOP(HL)RtAOPRtBOP(HL)PA=PB OPA=OPB试用文字语言试用文字语言叙述你所发现叙述你所发现的结论的结论证一证证一证PA、PB分别切分别切 O于于A、BPA=PBOPA=OPB 从圆外一点引圆的从圆外一点引圆的两条切线,它们的切两条切线,它们的切线长相等,圆心和这线长相等,圆心和这一点的连线平分两条一点的连线平分两条切线的夹角。切线的夹角。几何语言几何语言:反思:反思:切线长定理为证明线段相等、角相等提供切线长定理为证明线段相等、角相等提供新的方法新的方法OPAB 切线长定理切线长定理 APOB 若连结两切点若连结两切点A A、B B,ABAB交交OPOP于点于点M.M.你又能得出什么新的结你又能得出什么新的结论论?并给出证明并给出证明.OP垂直平分垂直平分AB证明:证明:PAPA,PBPB是是O O的切线的切线,点点A A,B B是切点是切点 PA=PB OPA=OPB PABPAB是等腰三角形是等腰三角形,PMPM为为顶角顶角的平分线的平分线 OP垂直平分垂直平分ABM试一试试一试APO。B 若延长若延长PO交交 O于点于点C,连结,连结CA、CB,你又能得出什么新的结论你又能得出什么新的结论?并给出证明并给出证明.CA=CB证明:证明:PAPA,PBPB是是O O的切线的切线,点点A A,B B是切点是切点 PA=PB OPA=OPB PC=PCPC=PC PCA PCB AC=BCAC=BCC。PBAO(3)连结圆心和圆外一点)连结圆心和圆外一点(2)连结两切点)连结两切点(1)分别连结圆心和切点)分别连结圆心和切点反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。想一想想一想(2)已知OA=3cm,OP=6cm,则APB=PABCO60(4)OP交O于M,则 ,M牛刀小试牛刀小试(3)若P=70,则AOB=110(1)若PA=4、PM=2,求圆O的半径OA OA=3已知:如图已知:如图,PA,PA、PBPB是是O O的切线,切点分别的切线,切点分别是是A A、B B,Q Q为为ABAB上一点,过上一点,过Q Q点作点作O O的切线,的切线,交交PAPA、PBPB于于E E、F F点,已知点,已知PA=12CMPA=12CM,求,求PEFPEF的周长。的周长。EAQPFBO易证易证EQ=EA,FQ=FB,PA=PBEQ=EA,FQ=FB,PA=PB PE+EQ=PA=12cmPF+FQ=PB=PA=12cm周长为24cm 牛刀再试牛刀再试探究:探究:PA、PB是是 O的两条切线,的两条切线,A、B为切点,直线为切点,直线OP交于交于 O于点于点D、E,交,交AB于于C。BAPOCED(1)写出图中所有的垂直关系)写出图中所有的垂直关系OAPA,OB PB ABOP(3)写出图中所有的全等三角形)写出图中所有的全等三角形AOP BOP,AOC BOC,ACP BCP(4)写出图中所有的等腰三角形)写出图中所有的等腰三角形ABP AOB(2)写出图中与)写出图中与OAC相等的角相等的角OAC=OBC=APC=BPC例例1 1、已知:、已知:P P为为O O外一点,外一点,PAPA、PBPB为为O O的的切线,切线,A A、B B为切点,为切点,BCBC是直径。是直径。求证:求证:ACOPACOPPACBDO 例题讲解例题讲解例例1 1、已知:、已知:P P为为O O外一点,外一点,PAPA、PBPB为为O O的的切线,切线,A A、B B为切点,为切点,BCBC是直径。是直径。求证:求证:ACOPACOPPACBO 例题讲解例题讲解 练习练习1.(口答)如图所示(口答)如图所示PA、PB分别切分别切圆圆O于于A、B,并与圆,并与圆O的切线分别相交于的切线分别相交于C、D,已知,已知PA=7cm,(1)求求PCD的周长的周长(2)如果如果P=46,求求COD的度数的度数C OPBDAE例例3 3、如图,四边形、如图,四边形ABCDABCD的边的边ABAB、BCBC、CDCD、DADA和圆和圆O O分别相切于点分别相切于点L L、M M、N N、P P,求证:求证:AD+BC=AB+CDAD+BC=AB+CDDLMNABCOP证明:由切线长定理得证明:由切线长定理得AL=APAL=AP,LB=MB,NC=MCLB=MB,NC=MC,DN=DPDN=DPAL+LB+NC+DN=AP+MB+MC+DPAL+LB+NC+DN=AP+MB+MC+DP 即即 AB+CD=AD+BCAB+CD=AD+BC补充:圆的外切四边形的两组对边的和相等补充:圆的外切四边形的两组对边的和相等例例4.如图,如图,ABC中中,C=90,它的内切圆它的内切圆O分别与边分别与边AB、BC、CA相切于点相切于点D、E、F,且,且BD=12,AD=8,求求 O的半径的半径r.OEBDCAF练习练习2.如图,如图,AB是是 O的直径,的直径,AD、DC、BC是切线,点是切线,点A、E、B为切点,为切点,(1)求证:求证:OD OC (2)若若BC=9,AD=4,求,求OB的长的长.OABCDE OABCDEF OABCDE选做题:如图,选做题:如图,AB是是 O的直径,的直径,AD、DC、BC是切线,点是切线,点A、E、B为切点,若为切点,若BC=9,AD=4,求,求OE的长的长.1.切线长定理切线长定理 从圆外一点引圆的两条切线从圆外一点引圆的两条切线,它们的切它们的切线长相等,圆心和这一点的连线平分两条切线的夹线长相等,圆心和这一点的连线平分两条切线的夹角。角。APO。BECDPA、PB分别切分别切 O于于A、BPA=PB,OPA=OPBOP垂直平分垂直平分AB 切线长定理为证明切线长定理为证明线段相等,角相等,弧相等,垂线段相等,角相等,弧相等,垂直关系直关系提供了理论依据。必须掌握并能灵活应用。提供了理论依据。必须掌握并能灵活应用。2.我们学过的切线,常有我们学过的切线,常有 性质:性质:1 1、切线和圆只有一个公共点;、切线和圆只有一个公共点;2 2、切线和圆心的距离等于圆的半径;、切线和圆心的距离等于圆的半径;3 3、切线垂直于过切点的半径;、切线垂直于过切点的半径;4 4、经过圆心垂直于切线的直线必过切点;、经过圆心垂直于切线的直线必过切点;5 5、经过切点垂直于切线的直线必过圆心。、经过切点垂直于切线的直线必过圆心。6 6、从圆外一点引圆的两条切线,它们的切线长、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。相等,圆心和这一点的连线平分两条切线的夹角。六个六个- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 24223 直线 位置 关系 切线 定理
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文