重点小学奥数--加法原理乘法原理.doc
《重点小学奥数--加法原理乘法原理.doc》由会员分享,可在线阅读,更多相关《重点小学奥数--加法原理乘法原理.doc(4页珍藏版)》请在咨信网上搜索。
加法原理与乘法原理 加法原理:完成一件工作共有N类方法。在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有mn种不同的方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法。 运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m1×m2×…×mn种方法。 运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。 这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。 运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。计数时要注意区分是分类问题还是分步问题,正确运用两个原理。灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。小学阶段只学习两个原理的简单应用。 【题目1】:用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法? 【解析】: 运用加法原理,把组成方法分成三大类: ①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。 ②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。 ③取三种人民币组成1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的。 所以共有组成方法:3+5+2=10(种)。 【题目2】:各数位的数字之和是24的三位数共有多少个? 【解析】: 一个数各个数位上的数字,最大只能是9,24可分拆为:24=9+9+7; 24=9+8+7;24=8+8+8。运用加法原理,把组成的三位数分为三大类: ①由9、9、8三个数字可组成3个三位数:998、989、899; ②由9、8、7三个数字可组成6个三位数:987、978、897、879、798、789; ③由8、8、8三个数字可组成1个三位数:888。 所以组成三位数共有:3+6+1=10(个)。 【题目3:提高题】:一把钥匙只能开一把锁,现在有10把钥匙和10把锁全部都搞乱了,最多要试验多少次才能全部配好锁和相应的钥匙? 【解析】: 要求“最多”多少次配好锁和钥匙,就要从最糟糕的情况开始考虑:第1把钥匙要配到锁,最多要试9次(如果9次配对失败,第10把锁就一定是这把钥匙,不用再试);同理,第2把钥匙最多要试8次;……第9把锁最多试1次,最好一把锁不用试。 所以,最多试验次数为:9+8+7……+2+1=45(次)。 【题目4】:某人到食堂去买饭菜,食堂里有4种荤菜,3种蔬菜,2种汤。他要各买一样,共有多少种不同的买法? 【解析】: 运用乘法原理,把买饭菜分为三步走: 第一步:选汤有2种方法。 第二步:选荤菜有4种方法。 每种选汤方法对应的都有4种选荤菜的方法,汤和荤菜共有2个4种,即8种不同的搭配方法。 第三步:选蔬菜有3种方法。 荤菜和汤有8种不同的搭配方法,每种搭配方法,对应的都有3种选蔬菜的方法与其二次搭配,共有8个3种,即24种不同搭配方法。如下图所示: ?????????? ??? 所以,共有不同的买法:2×4×3=24(种)。 【题目5】:用数字0,3,8,9能组成多少个数字不重复的三位数? 【解析】: 运用乘法原理,把组数过程分为三个步骤: 第一步:确定三位数百位上数字,有3种选法(最高位不能为0)。 第二步:确定十位上数字,有3种选法。 从上面四个数字中确定任意一个不为0的数字放在百位上,十位上都会剩下三个数字供选择。因此,对应百位上数字的每种选法,十位上数字都有3种不同的选择方法,两个数字共有3个3种,即9种不同的组成方法。 第三步:确定个位上数字,有2种选法。 从上面四个数字中去掉百位和十位上数字任意一种组成,个位上都会剩下2个不同的数字供选择。因此,对应百位和十位上数字的任意一种组成方法,个位上都有2种不同的选择方法,三个数字共有9个2种,即18中不同的组成方法。 所以,能组成的不重复的三位数的个数为:3×3×2=18(个)。 【题目6】:从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种不同的选法? 【解析】: 在三种不同类型的画里选择两种不同类型画有3种不同的选法,因此先把所有的选法分为三大类: 第一类:选1幅国画、1幅油画。 分两步完成,第一步选1幅国画有5种选法,第二步选油画有3种选法。对于前面国画的每一种选法,油画都有3种选法,共有选法:5×3=15(种)。 第二类:选1幅国画、1幅水彩画。 与第一类同理,共有选法:5×2=10(种)。 第三类:选1幅油画、1幅水彩画。 与第一类同理,共有选法:3×2=6(种)。 所以,共有不同的选法:15+10+6=31(种)。 【题目7】:有两个相同的正方体,每个正方体的6个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形? 【解析】: 假定这两个正方体分别为A正方体和B正方体。分两步确定向上的一面数字之和。 第一步,确定A正方体向上一面的数字,共有6种不同的情形:1,2,3,4,5,6; 第二步,确定B正方体向上一面的数字,有3种情形。因为B正方体面上有3个奇数,3个偶数,无论A正方体朝上的面上的数字是奇数还是偶数,对应的B正方体向上一面的数字都会有3种不同的情形,满足两面数字之和为偶数。 所以,向上的一面数字之和为偶数的情形有:6×3=18(种)。 【题目8-提高题】: 2003年12月6日0时起,南京市电话号码从7位升至8位。由于特殊需要,电信部门一直有这样的规定:普通市内电话号码的首位数字不使用0,1,9。升位前南京市普通电话号码的容量为多少门?升位后,南京市内电话号码的容量增加了多少门? 【解析】: 电话号码由0~9共10个数字组成,数字可以重复使用。 升位前的7位电话号码,首位数字不使用0,1,9,共有7种不同的选择,第二、三、四、五、六、七位数字都有10种不同选择。总容量为: 7×10×10×10×10×10×10=7000000(门)。 同理可算出,升位后8位电话号码总容量为: 7×10×10×10×10×10×10× 升位后,南京市内电话号码的容量增加了: 来源于网络- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重点 小学 加法 原理 乘法
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文