小学六年级奥数36讲(上)[1].doc
《小学六年级奥数36讲(上)[1].doc》由会员分享,可在线阅读,更多相关《小学六年级奥数36讲(上)[1].doc(73页珍藏版)》请在咨信网上搜索。
1、第1讲 计算综合(一) 繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题 1繁分数的运算必须注意多级分数的处理,如下所示: 甚至可以简单地说:“先算短分数线的,后算长分数线的”找到最长的分数线,将其上视为分子,其下视为分母 2一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数所以需将带分数化为假分数 3某些时候将分数线视为除号,可使繁分数的运算更加直观 4对于定义新运算,我们只需按题中的定义进行运算即可 5本讲要求大家对分数运算有很好的掌握,可参阅思维导引详解五年级 第1讲 循环小数与分数1计算:【分析与解】原式=2计算:【分析与解】 注意,作为被除数的这个繁分
2、数的分子、分母均含有于是,我们想到改变运算顺序,如果分子与分母在后的两个数字的运算结果一致,那么作为被除数的这个繁分数的值为1;如果不一致,也不会增加我们的计算量所以我们决定改变作为被除数的繁分数的运算顺序 而作为除数的繁分数,我们注意两个加数的分母相似,于是统一通分为19950.5 具体过程如下:原式=3计算:【分析与解】原式=4计算:已知=,则x等于多少?【分析与解】方法一:交叉相乘有88x+66=96x+56,x=125方法二:有,所以;所以,那么1.25 5求这10个数的和 【分析与解】方法一: = = = =. 方法二:先计算这10个数的个位数字和为; 再计算这10个数的十位数字和为
3、49=36,加上个位的进位的3,为; 再计算这10个数的百位数字和为48=32,加上十位的进位的3,为; 再计算这10个数的千位数字和为47=28,加上百位的进位的3,为; 再计算这10个数的万位数字和为46=24,加上千位的进位的3,为; 再计算这10个数的十万位数字和为45=20,加上万位的进位的2,为; 再计算这10个数的百万位数字和为44=16,加上十万位的进位的2,为; 再计算这10个数的千万位数字和为43=12,加上百万位的进位的1,为; 再计算这10个数的亿位数字和为42=8,加上千万位的进位的1,为;最后计算这10个数的十亿位数字和为41=4,加上亿位上没有进位,即为所以,这1
4、0个数的和为4938271591 6.如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少? 【分析与解】 因为每个端点均有三条线段通过,所以这6条线段的长度之和为: 7.我们规定,符号“”表示选择两数中较大数的运算,例如:352.9=2.93.5=3.5符号“”表示选择两数中较小数的运算,例如:3.52.9=2.93.5=2.9请计算:【分析与解】原式 8规定(3)=234,(4)=345,(5)=456,(10)=91011,如果,那么方框内应填的数是多少?【分析与解】=. 9从和式中必须去掉哪两个分数,才能使得余下的分数之和等于1?【分析与解】 因为,所以
5、,的和为l,因此应去掉与. 10如图1-2排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循环小数,例如1.892915929那么在所有这种数中。最大的一个是多少?【分析与解】 有整数部分尽可能大,十分位尽可能大,则有92918较大,于是最大的为 11请你举一个例子,说明“两个真分数的和可以是一个真分数,而且这三个分数的分母谁也不是谁的约数”. 【分析与解】 有, 评注:本题实质可以说是寻找孪生质数,为什么这么说呢? 注意到,当时,有 当a、b、c两两互质时,显然满足题意 显然当a、b、c为质数时一定满足,那么两个质数的和等于另一个质数,必定有一个质数为2,不妨设a为2,那么
6、有,显然b、c为一对孪生质数 即可得出一般公式:,c与c+2均为质数即可. 12计算: 【分析与解】原式=.13已知.问a的整数部分是多少? 【分析与解】 =.因为所以.同时所以a.综上有a所以a的整数部分为10114问与相比,哪个更大,为什么?【分析与解】方法一:令,有.而B中分数对应的都比A中的分数大,则它们的乘积也是BA,有AA4B,所以有AA,那么A即与相比,更大方法二:设,则=,显然、都是小于1的,所以有A2,于是A.15下面是两个1989位整数相乘:问:乘积的各位数字之和是多少?【分析与解】在算式中乘以9,再除以9,则结果不变因为能被9整除,所以将一个乘以9,另一个除以9,使原算式
7、变成:= 得到的结果中有19809=220个“123456790”和“987654320”及一个“12345678”和一个“987654321”,所以各位数之和为:+评注:1111111119=12345679; M的数字和为9k(其中M)可以利用上面性质较快的获得结果第2讲 计算综合(二) 本讲主要是补充计算综合(I)未涉及和涉及不深的问题,但不包括多位数的运算 1n(n+1)=n(n+1)(n+2)-(n-1)n(n+1)3; 2从1开始连续n个自然数的平方和的计算公a式: 3平方差公式:a2-b2=(a+b)(a-b)1 已知a=试比较a、b的大小.【分析与解】其中A=99,B=99+因
8、为A98+,所以有a b2.试求的和?【分析与解】 记则题目所要求的等式可写为:而所以原式的和为1评注:上面补充的两例中体现了递推和整体思想2 试求1+2+3+4+4+100的值?【分析与解】 方法一:利用等差数列求和公式,(首项+末项)项数2=(1+100)1002=5050方法二:倒序相加,1+ 2+ 3+ 4+ 5+ 97+ 98+ 99+ 100 100+ 99+ 98+ 97+ 96+4+ 3+ 2+ 1,上下两个数相加都是101,并且有100组,所以两倍原式的和为101100,那么原式的和为10l100 2=5050方法三:整数裂项(重点), 原式=(12+22+32+42+100
9、2)2=5050.3 试求l2+23+34+45+56+99100 【分析与解】方法一:整数裂项原式=(123+233+343+453+563+991003)3 =123+23(4-1)+34(5-2)+45(6-3)+56(7-4)+99100(101-98)3 方程二:利用平方差公式12+22+32+42+n2= 原式:12+l+22+2+32+3+42+4+52+5+992+99 =12+22+32+42+52+992+1+2+3+4+5+99 = =328350+4950 =3333005计算下列式子的值: 0.10.3+0.20.4+0.30.5+0.40.6+9.79.9+9.81
10、0.0 【分析与解】这个题看上去是一个关于小数的问题,实际上我们可以先把它们变成整数,然后再进行计算即先计算13+24+35+46+9799+98100。再除以100方法一:再看每一个乘法算式中的两个数,都是差2,于是我们容易想到裂项的方法 0.10.3+0.20.4+0.30.5+0.40.6+9.79.9+9.810.0=(13+24+35+46+9799+98100)100=(l2+1)+(23+2)+(34+3)+(45+4)+(9798+97)+(9899+98)100=(12+23+34+45+9798+9899)+(1+2+3+4+97+98)100=(9899100+9899)
11、100=3234+48.51=3282.51方法二:可以使用平方差公式进行计算 0.10.3+O.20.4+0.30.5+0.40.6+9.79.9+9.810.0=(13+24+35+46+9799+98l00)100=(12-1+22-1+32-1+42-1+52-1+992-1)100=(11+22+32+42+52+992-99)100=(99100199-99)100=16.5199-0.99=16.5200-16.5-0.99 =3282.51 评注:首先,我们要清楚数与数之间是相通的,小数的计算与整数的计算是有联系的下面简单介绍一下整数裂项 12+23+34+(n-1)n=123
12、+233+343+(n-1)n3=123+23(4-1)+34(5-2)+(n-1)nn+1-(n-2)=6.计算下列式子的值: 【分析与解】 虽然很容易看出可是再仔细一看,并没有什么效果,因为这不像分数裂项那样能消去很多项我们再来看后面的式子,每一项的分母容易让我们想到公式12+22+32+n2=n(n+1)(2n+1),于是我们又有减号前面括号里的式子有10项,减号后面括号里的式子也恰好有10项,是不是“一个对一个”呢?=7计算下列式子的值:【分析与解】显然直接求解难度很大,我们试着看看是否存在递推的规律.显然12+1=2;所以原式=1980122=396024习题计算1718+1819+
13、1920+2930的值提示:可有两种方法,整数裂项,利用1到n的平方和的公式.答案:(293031-161718)3=291031-16176=7358.第3讲 多位数的运算多位数的运算,涉及利用10k-1,提出公因数,递推等方法求解问题 一、10k-1的运用 在多位数运算中,我们往往运用10k-1来转化问题; 如:59049 我们把转化为3, 于是原式为59049=(3)59049=59049=(-1)19683=19683-19683 而对于多位数的减法,我们可以列个竖式来求解; +1 如:,于是为 简便计算多位数的减法,我们改写这个多位数原式=233=23=(-1)=-=,于是为.2计算
14、=AA,求A 【分析与解】 此题的显著特征是式子都含有,从而找出突破口. = =(-1) =() =(33)=A2 所以,A. 3计算25的乘积数字和是多少? 【分析与解】我们还是利用=来简便计算,但是不同于上式的是不易得出凑成,于是我们就创造条件使用:25=()()+125=()()+125=2-22()+125=4-2-2=-=100-50=(求差过程详见评注)=所以原式的乘积为那么原式乘积的数字和为12004+52004=12024评注:对于的计算,我们再详细的说一说=4计算的积?【分析与解】 我们先还是同上例来凑成;(求差过程详见评注) 我们知道能被9整除,商为:049382716 又
15、知1997个4,9个数一组,共221组,还剩下8个4,则这样数字和为84=32,加上后面的3,则数字和为35,于是再加上2个5,数字和为45,可以被9整除 能被9整除,商为04938271595; 我们知道能被9整除,商为:061728395; 这样9个数一组,共221组,剩下的1995个5还剩下6个5,而6个5和1个、6,数字和36,可以被9整除 能被9整除,商为0617284 于是,最终的商为: 评注:对于-计算,我们再详细的说一说 -+1-+1. 二、提出公因式有时涉及乘除的多位数运算时,我们往往需提出公因式再进行运算,并且往往公因式也是和式或者差式等5.计算:(1998+1998199
16、8+199819981998+)(1999+19991999+199919991999)1999【分析与解】1998原式1998(1+10001+100010001+)1999(1+10001+100010001+)19991998199919991998. 6试求1993123999999乘积的数字和为多少? 【分析与解】 我们可以先求出1993123的乘积,再计算与(10000001)的乘积,但是1993123还是有点繁琐设1993123=M,则(1000123)123000M(2000123=)246000,所以M为6位数,并且末位不是0;令M则M999999M(1000000-1)10
17、00000M-M-+1+1 那么这个数的数字和为:a+b+c+d+e+(f1)+(9a)+(9b)+(9c)+(9d)+(9e)+(9f+1)=96=54 所以原式的计算结果的数字和为54评注:M的数字和为9k(其中M的位数为x,且xk) 7试求999999999999999乘积的数字和为多少? 【分析与解】 通过上题的计算,由上题评注:设999999999999999M, 于是M类似的情况,于是,确定好M的位数即可;注意到999999999999999M,则M10100100013100000000 其中k=1+2+4+8+16+512=1024l=1023; 即M,即M最多为1023位数,
18、所以满足的使用条件,那么M与乘积的数字和为10249=102401024=9216原式的乘积数字和为9216 三、递推法的运用有时候,对于多位数运算,我们甚至可以使用递推的方法来求解,也就是通常的找规律的方法 8我们定义完全平方数A2=AA,即一个数乘以自身得到的数为完全平方数;已知:123456765432149是一个完全平方数,求它是谁的平方?【分析与解】 我们不易直接求解,但是其数字有明显的规律,于是我们采用递推(找规律)的方法来求解:121112;123211112;123432111112于是,我们归纳为1234n4321=()2 所以,1234567654321:11111112;
19、则,123456765432149=1111111272=77777772所以,题中原式乘积为7777777的平方评注:以上归纳的公式1234n4321()2,只有在n10时成立9.=A2,求A为多少? 求是否存在一个完全平方数,它的数字和为2005? 【分析与解】 方法一:问题直接求解有点难度,但是其数字有明显的规律,于是我们采用递推(找规律)的方法来求解: 注意到有可以看成,其中n2004; 寻找规律:当n=1时,有49=72; 当n=2时,有4489=672;当n=3时,有444889=6672; 于是,类推有= 方法二:下面给出严格计算: =+1; 则+1(4+8)+14(+1)+8+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 六年级 36
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。