小学六年级分数应用题专项复习.doc
《小学六年级分数应用题专项复习.doc》由会员分享,可在线阅读,更多相关《小学六年级分数应用题专项复习.doc(9页珍藏版)》请在咨信网上搜索。
分数应用题 【解题步骤】 一、正确的找单位“1”是解决分数应用题的前提。 不管什么样的分数应用题,题中必有单位“1”。正确的找到单位“1”是解答分数应用题的前提和首要任务。 分数应用题中的单位“1”分两种形式出现: 1、有明显标志的: (1)男生人数占全班人数的4/7 (2)杨树棵树是柳树的3/5 (3)小明的体重相当于爸爸的1/2 (4)苹果树比梨树多1/5 条件中“占”“是”“相当于”“比”后面,分率前面的量是本题中的单位“1”。 2、无明显标志的: (1)一条路修了200米,还剩2/3没修。这条路全长多少千米? (2)有200张纸,第一次用去1/4,第二次用去1/5。两次共用去多少张? (3)打字员打一部5000字的书稿,打了3/10,还剩多少字没打? 这3道题中的单位“1”没有明显标志,要根据问题和条件综合判断。(1)中应把“一条路的总长”看作单位“1”(2)题中应把“200张纸”看作单位“1”(3)题中应把“5000个字”看作单位“1”。 二、正确的找对应关系是解分数应用题的关键。 每道分数应用题都有数量和分率的对应关系,正确的找到所求数量(或分率)和哪个分率(或数量)对应是解分数应用题的关键。 1、画线段图找对应关系。 (1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几? (2)池塘里有12只鸭,鹅的只数是鸭的1/3。池塘里有多少只鹅? (3)池塘里有4只鹅,正好是鸭的只数的1/3。池塘里有多少只鸭? 用线段图表示一下这3道题的关系。从画的图可以看出,画线段图是正确找对应关系的有效手段。通过画线段图可以帮助学生理解数量关系,同时也可得出如下数量关系式: 分率对应量÷单位“1”的量=分率 单位“1”的量×分率=分率对应量 分率对应量÷分率=单位“1”的量 2、 从题里的条件中找对应关系 一桶水用去1/4后正好是10克。这桶水重多少千克? 水的3/4 = 10 三、根据数量关系式解答分数应用题“三步法” 掌握以上关系和数量关系式,解分数应用题可以按以下三步进行: 1、找准单位“1”的量; 2、找准对应关系 3根据数量关系式列式解答 四、有效练习,建立模型,提升解分数应用题的能力。 要想正确、迅速地解答分数应用题,必须多加练习,把基本型的、稍复杂型的和复杂型的结构特征理解清楚,才能熟练快速地解答分数应用题。 基础理论 (一)分数应用题的构建 1、分数应用题是小学数学教学中的重点和难点。它大体可以分成两种: 基本数量关系与整数应用题基本相同,只是把整数应用题中的已知数换成分数,解答方法与整数应用题基本相同。 根据分数乘除法的意义而产生的具有独特解法的分数应用题,这就是我们通常说的分数应用题。 2、分数应用题主要讨论的是以下三者之间的关系: 分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。 (2)标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。 (3)比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。 (二)分数应用题的分类 1、求一个数的几分之几是多少。这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,解这类应用题用乘法。即反映的是整体与部分之间关系的应用题,基本的数量关系是:整体量×分率=分率的对应的部分量;或已知一个看作单位“1”的数,另一个数占它的几分之几,求另一个数,即反映的是甲乙两数之间关系的应用题,基本的数量关系是:标准量×分率=分率的对应的比较量。 求一个数是另一个数的几分之几。这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。基本的数量关系是:比较量÷标准量=分率。 (1)求一个数是另一个数的几分之几: 比较量÷标准量=分率(几分之几)。 (2)求一个数比另一个数多几分之几:相差量÷标准量=分率(多几分之几)。 (3)求一个数比另一个数少几分之几:相差量÷标准量=分率(少几分之几)。 3、已知一个数的几分之几是多少,求这个数。这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量,解这类应用题用除法。基本的数量关系是:分率对应的比较量÷分率=标准量。 【例题解析】 1、求一个数的几分之几是多少。 求一个数的几分之几是多少: 标准量×(分率)=是多少(分率对应的比较量)。 例1:学校买来100千克白菜,吃了,吃了多少千克?(反映整体与部分之间的关系。) 白菜的总重量× = 吃了的重量 100 × = 80 (千克) 答:吃了80千克。 例2:小红体重42千克,小云体重40千克,小新体重相当于小红和小云体重总和的。小新体重是多少千克?(两个数量的和做为标准量。) (小红体重 + 小云体重)× = 小新体重 (42 +40)× = 41 (千克) 答:小新体重41千克。 求比一个数多几分之几多多少:标准量×(分率)=多多少(分率对应的比较量)。 例1:人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多。婴儿每分钟心跳比青少年多多少次?(所求数量和已知分率直接对应。) 青少年每分钟心跳次数×= 婴儿每分钟心跳比青少年多跳的次数 75 ×= 60(次) 答:婴儿每分钟心跳比青少年多跳60次。 (3)求比一个数多几分之几是多少:标准量×(1 + )(分率)=是多少(分率对应的比较量)。 例1:人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多。婴儿每分钟心跳多少次?(需将分率转化成所求数量对应的分率。) 青少年每分钟心跳次数 ×(1 + )=婴儿每分钟心跳的次数 75 × (1 + )=135(次) 答:婴儿每分钟心跳135次。 (4)求比一个数少几分之几少多少:标准量×(分率)=少多少(分率对应的比较量)。 例1:学校有20个足球,篮球比足球少 ,篮球比足球少多少个? (所求数量和已知分率直接对应。) 足球的个数× = 篮球比足球少的个数 20× = 4(个) 答:篮球比足球少4个。 (5)求比一个数少几分之几是多少:标准量×(1 - )(分率)=是多少(分率对应的比较量)。 例1:学校有20个足球,篮球比足球少 ,篮球有多少个?(需将分率转化成所求数量对应的分率。) 足球的个数×(1 — )=篮球的个数 20×(1 — )=16(个) 答:篮球有16个。 2、求一个数是另一个数的几分之几。 (1)求一个数是另一个数的几分之几: 比较量÷标准量=分率(几分之几)。 例1:学校的果园里有梨树15棵,苹果树20棵。梨树的棵数是苹果树的几分之几?(找准标准量。) 梨树的棵数÷苹果树的棵数 =梨树的棵数是苹果树的几分之几 15÷20 = 答:梨树的棵数是苹果树的. (2)求一个数比另一个数多几分之几:相差量÷标准量=分率(多几分之几)。 例1:学校的果园里有梨树15棵,苹果树20棵。苹果树的棵数比梨树多几分之几?(相差量是比较量。)苹果树比梨树多的棵数 ÷梨树树的棵数=多几分之几 (20—15)÷15 = 答:苹果树的棵数比梨树多。 (3)求一个数比另一个数少几分之几:相差量÷标准量=分率(少几分之几)。 例1:学校的果园里有梨树15棵,苹果树20棵。梨树的棵数比苹果树少几分之几?(相差量是比较量。)梨树比苹果树少的棵数÷苹果树的棵数 =少几分之几 (20—15)÷20= 答:梨树的棵数比苹果树少。 3、已知一个数的几分之几是多少,求这个数。 已知一个数的几分之几是多少,求这个数: 是多少(分率对应的比较量)÷(分率)=标准量。 例1:一个儿童体内所含水分有28千克,占体重的。这个儿童的体重有多少千克(反映整体与部分之间的关系) 体内水分的重量÷ =体重 28 ÷ = 35(千克) 答:这个儿童体重35千克。 例2:一条裤子的价格是75元,是一件上衣的。一件上衣多少元?(反映甲乙两数之间的关系) 裤子的单价÷=上衣的单价 75÷=112(元) 答:一件上衣112元。 (2)已知一个数比另一个数多几分之几多多少,求这个数:多多少(分率对应的比较量)÷(分率)=标准量。 例1:某工程队修筑一条公路。第一周修了这段公路的,第二周修筑了这段公路的,第二周比第一周多修了2千米。这段公路全长多少千米?(需要找相差数量对应的分率。) 第二周比第一周多修的千米数÷( — )=公路的全长 2÷( — )=56(千米) 答:这段公路全长56千米。 (3)已知一个数比另一个数多几分之几是多少,求这个数:是多少(分率对应的比较量)÷(1 +)(分率)=标准量。 例1:学校有20个足球,足球比篮球多 ,篮球有多少个?(需将分率转化成所求数量对应的分率。) 足球的个数÷(1+ )=篮球的个数 20÷(1+ )=16(个) 答:篮球有16个。 (4)已知一个数比另一个数少几分之几少多少,求这个数:少多少(分率对应的比较量)÷(分率)=标准量。 例1:某工程队修筑一条公路。第一天修了38米,第二天了42米。第一天比第二天少修的是这条公路全长的。这条公路全长多少米?(需要找相差分率对应的数量。) 第一天比第二天少修的米数÷=公路的全长 (42 — 38)÷=112(米) 答:这段公路全长112米。 (5)已知一个数比另一个数少几分之几是多少,求这个数:是多少(分率对应的比较量)÷(1 –)(分率)=标准量。 例1:学校有20个足球,足球比篮球少 ,篮球有多少个?(需将分率转化成所求数量对应的分率。) 足球的个数÷(1—)=篮球的个数 20÷(1—)=25(个) 答:篮球有25个。 五、统一单位“1”,巧解分数应用题 有些比较复杂的分数应用题,条件中几个“分率”的单位“1”各部相同,为顺利解题设置了难度。解答这类应用题时,要看准题中的“不变量”,把它看作比较的标准,依据转化、对应等方法统一单位“1”使问题得以解决。 1将不变的部分量看作单位“1” 例:食堂买回一些大米和面粉,面粉的重量是大米的4/5,大米用去54千克后,余下的大米重量是面粉的4/5。食堂买回大米和面粉共多少千克? 分析解答:从题中可看出,面粉的重量始终没有变化,如果把买回的面粉的重量看作单位“1”。原来面粉的重量是大米的4/5,那么,买回大米的重量就是面粉的5/4,又知道大米用去54千克后,余下大米的重量就是面粉的4/5,比较可得54千克与面粉重量的(5/4-4/5)=9/20相对应。于是可知买回面粉的重量是54÷9/20=120(千克)最后再求本题答案就很简单了。 54÷(5/4-4/5)×(1+5/4)=120×9/4=270(千克) 答:食堂买回大米和面粉270千克。 2、将不变的几个量的和看作单位“1”。 例2,小明的邮票张数是小强的5/6,小强送给小明8张后,小强的邮票张数是小明的4/7。小强原有邮票比小明多几张? 【分析解答】小强送给小明8张邮票,每人邮票张数在变化,但总张数没变,可把两人邮票总张数看作单位“1”。由“小明的邮票张数是小强的5/6”可知小强原有邮票是两人总张数的6/(6+5)=6/11。当小强送给小明8张后,小强的邮票张数就是两人总张数的4/(4+7)=4/11。相比可知,8张与(6/11-4/11)=2/11相对应。从而可求共有张数是8÷2/11=44(张)。又知“小明的邮票张数是小强的5/6”便可求出小强比小明多44×(6-5)/(6+5)=4(张) 综合式:8÷{6/(6+5)-4/(7+4)} ×(6-5)/(6+5)=4(张) 答:小强原有邮票比小明多4张。 上面分析师从小强占有邮票总张数的角度思考的,如果从小明占有邮票总张数的角度去思考,也能获解。 课后练习: 一般分数应用题 一本故事书,笑笑第一天看了全书的,第二天看了全书的25%。 (1)如果这本书共200页,笑笑共看了多少页? (2)笑笑第二天看了50页,这本书有多少页? (3)第一天比第二天少看了10页,这本书有多少页? (4)还有110页没有看完,这本书共有多少页? 2、淘气看一本科普书,第一天看了全书的25%,第二天看了剩下的。 (1)两天正好看了130页,这本书有多少页? (2)第一天比第二天多看了10页,这本书有多少页? 3、一本书共80页,分三天看完。第一天看了它的,第二天看了余下的,第三天看了多少页? 4、小明读一本书,第一天读了12页,第二天到了剩下的,这时读了的和没有读的页数正好一样多。这本书共有多少页? 分数的综合应用(转化单位“1”) 1、甲数的刚好等于乙数的30%,甲数是乙数的几分之几?乙数是甲数的几分之几?甲数比乙数少几分之几?乙数比甲数多百分之几? 2、果园里梨树棵树的等于杏树的,杏树棵树是梨树的几分之几?梨树棵树比杏树多百分之几? 3、五年级男生人数的刚好是女生人数的25%,女生人数是男生的几分之几?女生比男生多百分之几?男生比女生少几分之几? 4、大同小学五年级学生人数比四年级多25%,四年级学生人数比五年级少几分之几? 5、吨菜籽可以榨油吨,照这样计算,榨1吨菜油需要多少吨菜籽?每吨菜籽可以榨多少吨菜油?榨a吨菜油需要多少吨菜籽? 6、加工同一批零件,王师傅要用10小时,李师傅要用8小时,那么李师傅的工作效率比王师傅高百分之几? 【解题关键与提示】 要求用男工数、女工数分别去比车间职工人数,车间职工人数即男、女工之和。 两天看了几页?第一天比第二天少看几页?还剩下几页没看? 答:两天共看35页,第一天比第二天少看5页,还剩下25页没看。 【解题关键与提示】 ★例3某钢厂去年产钢400万吨,今年计划比去年增产6%。今年计划增产钢多少万吨?今年计划生产多少万吨? 解 400×6%=400×0.06=24(万吨) 400×(1+6%)=400×1.06=424(万吨) 答:今年计划增产钢24万吨,生产424万吨。 【解题关键与提示】 去年产量为“1”,增产吨数对应的百分率是400万吨的6%,生产吨数的对应百分率是(1+6%)。要求一个数的百分之几是多少,用乘法计算。 还剩下多少米? 【解题关键与提示】 “总长-第一次剪去的长度-第二次剪去的长度”,就得到还剩下的长度。 答:全班有42人。 【解题关键与提示】 根据量率对应关两系,即男生数÷男生分率=(“1”)全班人数。 这块地有多少亩? =150(亩) 答:这块地有150亩。 【解题关键与提示】 根据:耕的亩数÷耕的分率=一块地“1”的亩数。耕的亩数是(40+50) 有多少名? =21(名) 答:女生有21名。 【解题关键与提示】 =280(米) 答:第三天修了280米。 【解题关键与提示】 解(1)第二次运走一堆碎石的几分之几? (2)第三次运走一堆碎石的几分之几? (3)这堆碎石有多少吨? =32(吨) 答:这堆碎石有32吨。 【解题关键与提示】 剩下的吨数÷对应的分率=碎石总数。题中三个分数的单位“ 1”不同。必须转化成都以一堆碎石为“1”的分数,然后求剩下的分率。 ★★★例10有一桶油,第一次取出40%,第二次比第一次少取出10千克,桶里还剩30千克油。这桶油原来有多少千克? 解 (30—10)÷(1—40%× 2) =20÷20% =100(千克) 答:这桶油原来有100千克。 【解题关键与提示】 应该用剩下的油÷剩下的百分率=这桶油原来的重量。剩下的百分率=1-第一次取出的百分率-第二次取出的百分率。此题解答的难点是第二次取了这桶油的百分之几,这要用假定法计算了。用线段图表示题中的数量关系: 可以看到:假定第二次也取出40%。那么剩下的油就要减少10千克,是(30—10)千克了。 [点击关键词链接查看更多关于 六年数学试题 的文章] [点击关键词在人人学科网搜索更多关于六年数学试题的教学资源] - 分数应用题典型例题 (二)已知一个数,求它的几分之几(百分之几)是多少的应用题 1.概念及其类型: 这种类型的题目是已知标准数和分率(或百分率)求比较数。 2.解题关键及规律: 解这类题目的关键是确定标准数。题目中标准数已知,求比较数,其公式为: 比较数=标准数×分率(或百分率) 例1.黄庄去年春季植树1200棵,其中柳树占2/5,柳树有多少棵? 分析:通过“柳树占2/5”这句话,确定总棵数为标准数(即单位1)已知总棵数是1200棵。柳树为比较数。根据题意画出线段图如下: 从上图可以看出:柳数棵数是植树总棵数(1200棵)的2/5。 答:柳树有480棵。 想一想:如果把2/5改写成40%,应该怎样计算? 例2.东风小学共有学生1520人,男生人数占全校人数的5/8,女生有多少人? 分析:通过“男生人数占全校人数的5/8”这句话确定全校总人数为标准数(即单位“1”)全校总人数为1520人,女生人数为比较数。 根据题意画出线段图如下: 从上图可以看出,女生人数是全校总人数(1520人)的(1-5/8)。 解法一: 1520×(1-5/8)=1520×0.375=570(人) 答:女生有570人。 解法二:先求男生人数,再从全校总数里减去男生人数,就得女生人数。 1520-1520×5/8=1520-950=570(人) 答:女生有570人。 想一想:如果把5/8改写为62.5%应怎样计算? 例3.胜利糖厂去年计划生产白糖1440吨,实际比计划超产20%,去年实际生产白糖多少吨? 分析:通过“实际比计划超过20%”这句话确定“去年计划产量”为标准数(即单位“1”),计划产量为1440吨,去年实际产量为比较数。 根据题意画出线段图如下: 从上图可以看出:去年实际产量相当于计划产量的(1+20%)。 解法一:1440×(1+20%) =1440×1.2=1728(吨) 答:去年实际生产白糖1728吨。 解法二:先求出去年实际比计划多生产的吨数,再用与去年计划同样多的吨数与超产吨数相加。 列式:1440+1440×20% =1440+288 =1728(吨) 答:去年实际生产白糖1728吨。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 六年级 分数 应用题 专项 复习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文