广州市华附奥校人教版七年级下册数学期末压轴难题试卷及答案.doc
《广州市华附奥校人教版七年级下册数学期末压轴难题试卷及答案.doc》由会员分享,可在线阅读,更多相关《广州市华附奥校人教版七年级下册数学期末压轴难题试卷及答案.doc(28页珍藏版)》请在咨信网上搜索。
广州市华附奥校人教版七年级下册数学期末压轴难题试卷及答案-百度文库 一、选择题 1.如图,与是同旁内角的是( ) A. B. C. D. 2.下列各组图形可以通过平移互相得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点所在的位置是( ) A.轴 B.轴 C.第一象限 D.第四象限 4.下列命题是假命题的是( ) A.对顶角相等 B.两条直线被第三条直线所截,同位角相等 C.在同一平面内,垂直于同一条直线的两条直线互相平行 D.在同一平面内,过直线外一一点有且只有一条直线与已知直线平行 5.如图,点E在BA的延长线上,能证明BE∥CD是( ) A.∠EAD=∠B B.∠BAD=∠BCD C.∠EAD=∠ADC D.∠BCD+∠D=180° 6.如图,下列各数中,数轴上点A表示的可能是( ) A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根 7.如图,,交于点,平分,,则的度数为( ). A.60° B.55° C.50° D.45° 8.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( ) A.(﹣1,﹣1) B.(﹣1,1) C.(﹣2,1) D.(2,0) 二、填空题 9.算术平方根是的实数是___________. 10.点(3,0)关于y轴对称的点的坐标是_______ 11.如图,分别作和的角平分线交于点,称为第一次操作,则_______;接着作和的角平分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此一直操作下去,则______. 12.如图,AD//BC,,则____度. 13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC,,,点D是AB边上的固定点(),请在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,使EF与三角形ABC的一边平行,则为________度. 14.任何实数a,可用表示不超过a的最大整数,如,现对50进行如下操作:50,这样对50只需进行3次操作后变为1,类似地,对72只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是______. 15.在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为__. 16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______ 三、解答题 17.(1)已知,求x的值; (2)计算:. 18.求下列各式中的x值 (1)x2﹣6 (2)(2x﹣1)3=﹣4 19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC 证明:∵ ∠1+∠AFE=180° ∴ CD∥EF( , ) ∵∠A=∠2 ∴( ) ( , ) ∴ AB∥CD∥EF( , ) ∴ ∠A= ,∠C= , ( , ) ∵ ∠AFE =∠EFC+∠AFC ,∴ = . 20.在图所示的平面直角坐标系中表示下面各点:;;;;; (1)点到原点的距离是________; (2)将点向轴的负方向平移个单位,则它与点________重合; (3)连接,则直线与轴是什么关系? (4)点分别到、轴的距离是多少? 21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小聪用来表示的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为的整数部分是1,用个数减去其整数部分,差就是它的小数部分. 请解答下列问题: (1)的整数部分是____,小数部分是_____. (2)如果的小数部分是a,的整数部分是b,求的值. (3)已知,其中x是正整数,,求的相反数. 二十二、解答题 22.如图,用两个面积为的小正方形拼成一个大的正方形. (1)则大正方形的边长是 ; (2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为? 二十三、解答题 23.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 24.问题情境 (1)如图1,已知,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ; 问题迁移 (2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记. ①如图2,当点在两点之间运动时,请直接写出与之间的数量关系; ②如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由. 25.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ; (2)如图②,若,作的平分线交于,交于,试说明; (3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围. 26.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处. (1)若,________. (2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论. ②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明. (3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同旁内角的概念:两条直线被第三条直线所截,若两个角都在两直线之间,并且在第三条直线的同旁,据此可排除选项. 【详解】 解:与是同旁内角的是; 故选C. 【点睛】 本题主要考查同旁内角的概念,熟练掌握同旁内角的概念是解题的关键. 2.C 【分析】 根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案. 【详解】 解:观察图形可知图案C通过平移后可以得到. 故选:C. 【点睛】 本题考查的是 解析:C 【分析】 根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案. 【详解】 解:观察图形可知图案C通过平移后可以得到. 故选:C. 【点睛】 本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键. 3.A 【分析】 由于点的纵坐标为0,则可判断点在轴上. 【详解】 解:点的纵坐标为0, 故在轴上, 故选:A. 【点睛】 本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点. 4.B 【分析】 根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案. 【详解】 A、对顶角相等;真命题; B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等; C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题; D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题; 故选:B. 【点睛】 本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题. 5.C 【分析】 根据平行线的判定定理对四个选项进行逐一判断即可. 【详解】 解:A、若∠EAD=∠B,则AD∥BC,故此选项错误; B、若∠BAD=∠BCD,不可能得到BE∥CD,故此选项错误; C、若∠EAD=∠ADC,可得到BE∥CD,故此选项正确; D、若∠BCD+∠D=180°,则BC∥AD,故此选项错误. 故选:C. 【点睛】 本题考查了平行线的判定定理,熟练掌握平行线的判定方法是解题的关键. 6.C 【详解】 解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2, 故根据数轴可知, 故选C 7.C 【分析】 根据两直线平行的性质定理,进行角的转换,再根据平角求得,进而求得. 【详解】 , , 又∵ , 平分, , 故选:C. 【点睛】 本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点. 8.A 【分析】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第 解析:A 【分析】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解. 【详解】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2, 由题意知:第一次相遇物体甲与物体乙运动的路程和为 , 物体甲运动的路程为,物体乙运动的路程为 , 此时在BC边相遇,即第一次相遇点为(-1,1); 第二次相遇物体甲与物体乙运动的路程和为 , 物体甲运动的路程为,物体乙运动的路程为, 在DE边相遇,即第二次相遇点为(-1,-1); 第三次相遇物体甲与物体乙运动的路程和为, 物体甲运动的路程为,物体乙运动的路程为, 在A点相遇,即第三次相遇点为(2,0); 此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ∵ ,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1). 故选:A. 【点睛】 本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点. 二、填空题 9.5 【分析】 根据算术平方根的定义解答即可. 【详解】 解:算术平方根是的实数是5. 故答案为:5. 【点睛】 本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个 解析:5 【分析】 根据算术平方根的定义解答即可. 【详解】 解:算术平方根是的实数是5. 故答案为:5. 【点睛】 本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个,算术平方根有1个是解题关键. 10.(-3,0) 【分析】 根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可. 【详解】 解:点(m,n)关于y轴对称点的坐标(-m,n), 所以点(3,0)关于y轴 解析:(-3,0) 【分析】 根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可. 【详解】 解:点(m,n)关于y轴对称点的坐标(-m,n), 所以点(3,0)关于y轴对称的点的坐标为(-3,0). 故答案为:(-3,0). 【点睛】 本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 11.90° 【分析】 过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠E 解析:90° 【分析】 过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠EP1F,再同理求出∠P2,∠P3,总结规律可得. 【详解】 解:过P1作P1Q∥AB,则P1Q∥CD, ∵AB∥CD, ∴∠AEF+∠CFE=180°, ∠AEP1=∠EP1Q,∠CFP1=∠FP1Q, ∵和的角平分线交于点, ∴∠EP1F=∠EP1Q+∠FP1Q=∠AEP1+∠CFP1=(∠AEF+∠CFE)=90°; 同理可得:∠P2=(∠AEF+∠CFE)=45°, ∠P3=(∠AEF+∠CFE)=22.5°, ..., ∴, 故答案为:90°,. 【点睛】 本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解. 12.52 【分析】 根据AD//BC,可知,根据三角形内角和定理以及求得,结合题意,即可求得. 【详解】 , , , , , . 故答案为:52. 【点睛】 本题考查了平行线的性质,三角形内角和定理, 解析:52 【分析】 根据AD//BC,可知,根据三角形内角和定理以及求得,结合题意,即可求得. 【详解】 , , , , , . 故答案为:52. 【点睛】 本题考查了平行线的性质,三角形内角和定理,角度的计算,掌握以上知识是解题的关键. 13.35°或75°或125° 【分析】 由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数. 【详解】 解:当EF∥AB时, ∠BDE=∠DEF, 由折 解析:35°或75°或125° 【分析】 由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数. 【详解】 解:当EF∥AB时, ∠BDE=∠DEF, 由折叠可知:∠DEF=∠DEB, ∴∠BDE=∠DEB,又∠B=30°, ∴∠BDE=(180°-30°)=75°; 当EF∥AC时, 如图,∠C=∠BEF=50°, 由折叠可知:∠BED=∠FED=25°, ∴∠BDE=180°-∠B=∠BED=125°; 如图,EF∥AC, 则∠C=∠CEF=50°, 由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°, 则∠CED+50°=180°-∠CED, 解得:∠CED=65°, ∴∠BDE=∠CED-∠B=65°-30°=35°; 综上:∠BDE的度数为35°或75°或125°. 【点睛】 本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解. 14.255 【分析】 根据[a]的含义求出这个数的范围,再求最大值. 【详解】 解:设这个数是p, ∵[x]=1 .∴1≤x<2. ∴1≤<2. ∴1≤m<4. ∴1≤<16. ∴1≤p<256. ∵p 解析:255 【分析】 根据[a]的含义求出这个数的范围,再求最大值. 【详解】 解:设这个数是p, ∵[x]=1 .∴1≤x<2. ∴1≤<2. ∴1≤m<4. ∴1≤<16. ∴1≤p<256. ∵p是整数. ∴p的最大值为255. 故答案为:255. 【点睛】 本题考查了估算无理数的大小,正确理解取整含义是求解本题的关键. 15.(-2,6)或(-2,0). 【分析】 根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案. 【详解】 解:由点P(-2,3),PA∥y轴,PA=3,得 在P点 解析:(-2,6)或(-2,0). 【分析】 根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案. 【详解】 解:由点P(-2,3),PA∥y轴,PA=3,得 在P点上方的A点坐标(-2,6), 在P点下方的A点坐标(-2,0), 故答案为:(-2,6)或(-2,0). 【点睛】 本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏. 16.(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解 解析:(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解】 解:∵点A(﹣4,0),B(0,3), ∴OA=4,OB=3, ∴AB==5, ∴第(3)个三角形的直角顶点的坐标是; 观察图形不难发现,每3个三角形为一个循环组依次循环, ∴一次循环横坐标增加12, ∵2013÷3=671 ∴第(2013)个三角形是第671组的第三个直角三角形, 其直角顶点与第671组的第三个直角三角形顶点重合, ∴第(2013)个三角形的直角顶点的坐标是即. 故答案为:. 【点睛】 本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键. 三、解答题 17.(1)x=3或x=-1;(2) 【分析】 (1)根据平方根的性质求解; (2)根据绝对值、算术平方根和立方根的性质求解. 【详解】 (1)解:∵; ∴ ∴x=3或x=-1 (2)原式= , 【 解析:(1)x=3或x=-1;(2) 【分析】 (1)根据平方根的性质求解; (2)根据绝对值、算术平方根和立方根的性质求解. 【详解】 (1)解:∵; ∴ ∴x=3或x=-1 (2)原式= , 【点睛】 本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 18.(1);(2). 【分析】 (1)根据平方根的定义解答即可; (2)根据立方根的定义解答即可. 【详解】 (1)x2﹣6, 移项得:, 开方得:x, 解得:; (2)(2x﹣1)3=﹣4, 变形得: 解析:(1);(2). 【分析】 (1)根据平方根的定义解答即可; (2)根据立方根的定义解答即可. 【详解】 (1)x2﹣6, 移项得:, 开方得:x, 解得:; (2)(2x﹣1)3=﹣4, 变形得:(2x﹣1)3=﹣8, 开立方得:, ∴2x=1, 解得:. 【点睛】 本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个. 19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【分析】 根据同旁 解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【分析】 根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可. 【详解】 证明:∵ ∠1+∠AFE=180° ∴ CD∥EF(同旁内角互补,两直线平行), ∵∠A=∠2 , ∴( AB∥CD ) (同位角相等,两直线平行), ∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行) ∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等) ∵ ∠AFE =∠EFC+∠AFC , ∴ ∠A = ∠C+∠AFC . 故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【点睛】 本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键. 20.(1)3;(2)C;(3)平行;(4)7,5 【分析】 先在平面直角坐标中描点. (1)根据两点的距离公式可得A点到原点O的距离; (2)找到点B向x轴的负方向平移6个单位的点即为所求; (3)横坐 解析:(1)3;(2)C;(3)平行;(4)7,5 【分析】 先在平面直角坐标中描点. (1)根据两点的距离公式可得A点到原点O的距离; (2)找到点B向x轴的负方向平移6个单位的点即为所求; (3)横坐标相同的两点所在的直线与y轴平行; (4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值. 【详解】 解:(1)∵A(0,3), ∴A点到原点O的距离是3; (2)将点B向x轴的负方向平移6个单位, 则坐标为(-3,-5),与点C重合; (3)如图,BD与y轴平行; (4)∵E(5,7), ∴点E到x轴的距离是7,到y轴的距离是5. 【点睛】 本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式.本题是综合题型,但难度不大. 21.(1)3;;(2)7;(3) 【分析】 (1)先求出的取值范围,即可求出的整数部分,从而求出结论; (2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解; ( 解析:(1)3;;(2)7;(3) 【分析】 (1)先求出的取值范围,即可求出的整数部分,从而求出结论; (2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解; (3)根据题意先求出x,y所表示的数,再求出x-y,即可求出其相反数. 【详解】 解:(1)∵3<<4, ∴的整数部分是3,小数部分是 故答案为:3;; (2)∵ ∴ ∴ ∴的小数部分a=-2= ∵ ∴ ∴的整数部分b=4 ∴ =+4 =7; (3)∵ ∴ ∴ ∴的整数部分为2,小数部分为-2= ∵,其中x是正整数,, ∴,y= ∴= ∴的相反数为. 【点睛】 此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键. 二十二、解答题 22.(1);(2)无法裁出这样的长方形. 【分析】 (1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小 解析:(1);(2)无法裁出这样的长方形. 【分析】 (1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可. 【详解】 解:(1)由题意得,大正方形的面积为200+200=400cm2, ∴边长为: ; 根据题意设长方形长为 cm,宽为 cm, 由题: 则 长为 无法裁出这样的长方形. 【点睛】 本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键. 二十三、解答题 23.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性 解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键. 24.(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; 解析:(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; ②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α. 【详解】 解:(1)过点P作PG∥AB,则PG∥CD, 由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°, 又∵∠PBA=125°,∠PCD=155°, ∴∠BPC=360°-125°-155°=80°, 故答案为:80; (2)①如图2, 过点P作FD的平行线PQ, 则DF∥PQ∥AC, ∴∠α=∠EPQ,∠β=∠APQ, ∴∠APE=∠EPQ+∠APQ=∠α+∠β, ∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β; ②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由: 过P作PQ∥DF, ∵DF∥CG, ∴PQ∥CG, ∴∠β=∠QPA,∠α=∠QPE, ∴∠APE=∠APQ-∠EPQ=∠β-∠α. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论. 25.(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠ 解析:(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE. (3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案. 详解:(1)S△BCD=CD•OC=×3×2=3. (2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE. (3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC ∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=. 点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解. 26.(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ 解析:(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果; ②利用两次外角定理得出结论; (3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解. 【详解】 解:(1)∵,, ∴∠A′=∠A=180°-(65°+70°)=45°, ∴∠A′ED+∠A′DE =180°-∠A′=135°, ∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°; (2)①,理由如下 由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED, ∵∠AEB+∠ADC=360°, ∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED, ∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A; ②,理由如下: ∵是的一个外角 ∴. ∵是的一个外角 ∴ 又∵ ∴ (3)如图 由题意知, ∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A') 又∵∠B=∠B',∠C=∠C',∠A=∠A', ∠A+∠B+∠C=180°, ∴∠1+∠2+∠3+∠4+∠5+∠6=360°. 【点睛】 题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广州市 华附奥校人教版七 年级 下册 数学 期末 压轴 难题 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文