【教学设计】三角形内角和定理.doc
《【教学设计】三角形内角和定理.doc》由会员分享,可在线阅读,更多相关《【教学设计】三角形内角和定理.doc(3页珍藏版)》请在咨信网上搜索。
更多免费资源请登录荣德基官网()下载或加官方QQ获取 7.5.1 三角形内角和定理 教学目标 【知识与技能】 1.经历实践活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理. 2.能应用三角形的内角和定理解决一些简单的实际问题. 【过程与方法】 教师演示教具,帮助学生掌握知识. 【情感、态度与价值观】 帮助学生树立几何知识源于客观实际的观念,激发学生学习的兴趣. 教学重难点 【重点】 三角形的内角和定理. 【难点】 三角形的内角和定理推理的过程. 教学过程 一、引入新课 我们在小学就已经知道三角形的内角和等于180°,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢? 二、三角形内角和定理的证明 回顾我们小学做过的实验,你是怎样操作的? 1.在所准备的三角形硬纸片上标出三个内角的编码. 2.让学生动手把一个三角形的两个角剪下来拼在第三个角的顶点处,用量角器量出∠BCD的度数,可得到∠A+∠B+∠ACB=180°. 3.剪下∠A,按右下图所示拼在一起,AB∥CM,从而可得到∠A+∠B+∠ACB=180°. 4.把∠2和∠3剪下按下图所示拼在一起,用量角器量一量∠MAN的度数,会得到什么结果? 三、探索问题 如果我们不用剪、拼办法,可不可以用推理论证的方法来说明上面的结论的正确性呢? 已知△ABC,求证:∠A+∠B+∠C=180°. 证明: 过点C作CE∥AB,并作线段BC的延长线CD,则∠A=∠ACE,∠B=∠DCE. 又∠ACB+∠ACE+∠DCE=180°, ∴∠A+∠B+∠ACB=180°. 即:三角形的内角和等于180°. 四、例题讲解 【例1】如图,在△ABC中,∠B=38°,∠C=62°,AD是△ABC的角平分线,求∠ADB的度数. 【答案】在△ABC中,∠B+∠C+∠BAC=180°(三角形内角和定理). ∵∠B=38°,∠C=62°(已知), ∴∠BAC=180°-38°-62°=80°(等式的性质). ∵AD平分∠BAC(已知), ∴∠BAD=∠CAD=∠BAC=×80°=40°(角平分线的定义). 在△ADB中,∠B+∠BAD+∠ADB=180°(三角形内角和定理). ∵∠B=38°(已知),∠BAD=40°(已证), ∴∠ADB=180°-38°-40°=102°(等式的性质). 【例2】如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向,从C岛看A、B两岛的视角∠ACB是多少度? 分析:怎样能求出∠ACB的度数? 根据三角形的内角和定理,只需求出∠CAB和∠CBA的度数即可. ∠CAB等于多少度?怎样求∠CBA的度数? 【答案】∠CAB=∠BAD-∠CAD=80°-50°=30°. ∵AD∥BE, ∴∠BAD+∠ABE=180°, ∴∠ABE=180°-∠BAD=180°-80°=100°, ∴∠ABC=∠ABE-∠EBC=100°-40°=60°, ∴∠ACB=180°-∠ABC-∠CAB=180°-60°-30°=90°. 答:从C岛看A、B两岛的视角∠ACB是90°. 五、巩固练习 判断下列各题. (1)三角形中最大的角是90°,那么这个三角形是锐角三角形.( ) (2)一个三角形中最多只有一个钝角或直角.( ) (3)一个等腰三角形一定是锐角三角形.( ) (4)一个三角形最少有一个角不大于90°.( ) 【答案】(1)× (2)√ (3)× (4)√ 六、课堂小结 本节课先介绍三角形的内角和是180°,引出证明过程,分为剪纸法和公式证明法,理论结合实际,让同学们牢记这一重要结论. 3- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学设计 教学 设计 三角形 内角 定理
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文