求轨迹方程问题—6大常用方法.doc
《求轨迹方程问题—6大常用方法.doc》由会员分享,可在线阅读,更多相关《求轨迹方程问题—6大常用方法.doc(13页珍藏版)》请在咨信网上搜索。
1、 求轨迹方程问题6大常用方法 知识梳理:(一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标
2、x,y与该参数t的函数关系xf(t),yg(t),进而通过消参化为轨迹的普通方程F(x,y)0。 4. 代入法(相关点法):如果动点P的运动是由另外某一点P的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P的坐标,然后把P的坐标代入已知曲线方程,即可得到动点P的轨迹方程。5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得
3、所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。(二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。 4求轨迹方程还有整体法等
4、其他方法。在此不一一缀述。课前热身: 1. P是椭圆=1上的动点,过P作椭圆长轴的垂线,垂足为M,则PM中点的轨迹中点的轨迹方程为: ( ) A、 B、 C、 D、=1【答案】:B【解答】:令中点坐标为,则点P 的坐标为(代入椭圆方程得,选B2. 圆心在抛物线上,并且与抛物线的准线及轴都相切的圆的方程是( )A B C D 【答案】:D【解答】:令圆心坐标为(,则由题意可得,解得,则圆的方程为,选D3: 一动圆与圆O:外切,而与圆C:内切,那么动圆的圆心M的轨迹是:A:抛物线B:圆 C:椭圆 D:双曲线一支【答案】:D【解答】令动圆半径为R,则有,则|MO|-|MC|=2,满足双曲线定义。故选
5、D。 4: 点P(x0,y0)在圆x2+y2=1上运动,则点M(2x0,y0)的轨迹是 ( )A.焦点在x轴上的椭圆 B. 焦点在y轴上的椭圆C. 焦点在y轴上的双曲线 D. 焦点在X轴上的双曲线【答案】:A【解答】:令M的坐标为则代入圆的方程中得,选A【互动平台】 一:用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程。例1:已知的顶点A,B的坐
6、标分别为(-4,0),(4,0),C 为动点,且满足求点C的轨迹。【解析】由可知,即,满足椭圆的定义。令椭圆方程为,则,则轨迹方程为(,图形为椭圆(不含左,右顶点)。【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4) 到定点与定直线距离相等。【变式1】: 1:已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。解:设动圆的半径为R,由两圆外切的条件可得:,。动圆圆心P的轨迹是以M1、M2为焦点的双
7、曲线的右支,c=4,a=2,b2=12。故所求轨迹方程为2:一动圆与圆O:外切,而与圆C:内切,那么动圆的圆心M的轨迹是:A:抛物线B:圆 C:椭圆 D:双曲线一支【解答】令动圆半径为R,则有,则|MO|-|MC|=2,满足双曲线定义。故选D。二:用直译法求曲线轨迹方程此类问题重在寻找数量关系。例2: 一条线段AB的长等于2a,两个端点A和B分别在x轴和y轴上滑动,求AB中点P的轨迹方程?解 设M点的坐标为 由平几的中线定理:在直角三角形AOB中,OM=M点的轨迹是以O为圆心,a为半径的圆周.【点评】此题中找到了OM=这一等量关系是此题成功的关键所在。一般直译法有下列几种情况:1)代入题设中的
8、已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.【变式2】: 动点P(x,y)到两定点A(3,0)和B(3,0)的
9、距离的比等于2(即),求动点P的轨迹方程?【解答】|PA|=代入得化简得(x5)2+y2=16,轨迹是以(5,0)为圆心,4为半径的圆.三:用参数法求曲线轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参数的取值范围。例3过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程。【解析】分析1:从运动的角度观察发现,点M的运动是由直线l1引发的,可设出l1的斜率k作为参数,建立动点M坐标(x,y)满足的参数方程。解法1:设M(x,y),设直线l1的方程为y4k(x2),(k) M为AB的中点, 消去k,
10、得x2y50。 另外,当k0时,AB中点为M(1,2),满足上述轨迹方程; 当k不存在时,AB中点为M(1,2),也满足上述轨迹方程。 综上所述,M的轨迹方程为x2y50。 分析2:解法1中在利用k1k21时,需注意k1、k2是否存在,故而分情形讨论,能否避开讨论呢?只需利用PAB为直角三角形的几何特性: 解法2:设M(x,y),连结MP,则A(2x,0),B(0,2y), l1l2,PAB为直角三角形 化简,得x2y50,此即M的轨迹方程。分析3:设M(x,y),由已知l1l2,联想到两直线垂直的充要条件:k1k21,即可列出轨迹方程,关键是如何用M点坐标表示A、B两点坐标。事实上,由M为A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轨迹 方程 问题 常用 方法
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。