【教学设计】二次根式.doc
《【教学设计】二次根式.doc》由会员分享,可在线阅读,更多相关《【教学设计】二次根式.doc(6页珍藏版)》请在咨信网上搜索。
更多免费资源请登录荣德基官网()下载或加官方QQ获取 二次根式 一、 内容和内容解析 1.内容 二次根式的概念及其二次根式的性质. 2.内容解析 本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 教材例题讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质. 本节课的教学重点是:了解二次根式的概念及理解二次根式的性质. 二、目标和目标解析 1.教学目标 (1)体会研究二次根式是实际的需要. (2)了解二次根式的概念. (3)经历探索二次根式的性质的过程,并理解其意义; (4)会运用二次根式的性质进行二次根式的化简. 2. 教学目标解析 (1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性. (2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围. (3)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质; (4)学生能灵活运用二次根式的性质进行二次根式的化简. 三、教学问题诊断分析 对于二次根式的定义,应侧重让学生理解 “的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力. 本节课的教学难点为:理解二次根式的双重非负性及二次根式性质的灵活运用. 四、教学过程设计 (一)1.创设情境,提出问题 问题1你能用带有根号的的式子填空吗? (1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______. (2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m. (3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____. 师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价. 【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性. 问题2 上面得到的式子,,分别表示什么意义?它们有什么共同特征? 师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根. 【设计意图】为概括二次根式的概念作铺垫. 2.抽象概括,形成概念 问题3 你能用一个式子表示一个非负数的算术平方根吗? 师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号. 【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力. 追问:在二次根式的概念中,为什么要强调“a≥0”? 师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由. 【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解. 3.辨析概念,应用巩固 例1 当时怎样的实数时,在实数范围内有意义? 师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解. (二)探究性质1 问题1 你能解释下列式子的含义吗? ,,,. 师生活动:教师引导学生说出每一个式子的含义. 【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方. 问题2 根据算术平方根的意义填空,并说出得到结论的依据. ; ; ; . 师生活动: 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据. 【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫. 问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗? 师生活动:引导学生归纳得出二次根式的性质:(≥0). 【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力. 例2 计算 (1);(2). 师生活动:学生独立完成,集体订正. 【设计意图】巩固二次根式的性质1,学会灵活运用. 2.探究性质2 问题4 你能解释下列式子的含义吗? ,,,. 师生活动:教师引导学生说出每一个式子的含义. 【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根. 问题5 根据算术平方根的意义填空,并说出得到结论的依据. = ,= ,= ,= . 师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据. 【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫. 问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗? 师生活动:引导学生归纳得出二次根式的性质:(≥0) 【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力. 例3 计算 (1);(2). 师生活动:学生独立完成,集体订正. 【设计意图】巩固二次根式的性质2,学会灵活运用. 五、目标检测设计 1. 下列各式中,一定是二次根式的是( ) A. B. C. D. 【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数. 2. 当 时,二次根式无意义. 【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题. 3.当 时,二次根式有最小值,其最小值是 . 【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用. 4.对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围. 【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑. 6- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学设计 教学 设计 二次 根式
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文