【学案】矩形及其性质-(2).doc
《【学案】矩形及其性质-(2).doc》由会员分享,可在线阅读,更多相关《【学案】矩形及其性质-(2).doc(4页珍藏版)》请在咨信网上搜索。
矩形 【学习目标】 1.掌握矩形的概念. 2.掌握矩形的性质定理“矩形的四个角都是直角”,“矩形的对角线相等”. 3.探索矩形的对称性. 【重点】 矩形的性质. 【难点】 矩形的对称性的推理过程. 【自学指导】 一.自主学习 如图,用6根火柴棒首尾相接摆成一个平行四边形. 思考:(1)能摆成多少个不同的平行四边形?它们有什么共同的特点? (2)在这些平行四边形中,有没有面积最大的一个平行四边形?说出你的理由? (3)这个面积最大的平行四边形的内角有什么特点?量一量它的两条对角线的长度,你有什么发现? 二.讲解新课 1.矩形的概念 在上面“自主学习”和小学的知识基础上,你能归纳出矩形的概念吗? 请你举出三个日常生活中的矩形的实例. 2.矩形的性质 根据上面的定义提问: (1)矩形是不是平行四边形? (2)平行四边形是不是矩形? (3)平行四边形的性质矩形有没有也具备? (4)矩形有没有与平行四边形不同的性质? 由此你可以推断出:矩形不但具备一般平行四边形的所有性质,还具备一般平行四边形没有的特殊性质: (1)矩形的四个角都是直角; (2)矩形的对角线相等. 请你根据矩形的性质2,画出图形,写出已知、求证,试着独立完成性质2的证明. 已知:如图,AC和BD是矩形ABCD的对角线; 求证:AC=BD. 3.讲解范例 例1.已知:如图,在矩形ABCD中对角线AC、BD 相交于点O,∠AOD=120°,AB=4cm. (1)判断△AOB的形状; (2)求对角线的长. 启发性问题: (1)矩形的对角线有什么性质? (2)平行四边形的对角线有什么性质? (3)有(1)与(2)可以知道,矩形的对角线被点O分成了四部分,OA、OB、OC、OD它们的大小关系是怎样的? (4)从∠AOD=120°,可以知道∠AOB是多少度?由此可以看出△AOB是什么形状? (5)从△AOB的形状可以知道对角线AC、BD与AB有什么关系? 4.矩形的对称性 根据例1,再通过作图的方式,说明矩形既是轴对称图形,又是中心对称图形,有两条对称轴. 【课堂小结】 1.矩形不但具备一般平行四边形的所有性质,还具备一般平行四边形没有的特殊性质是: (1)矩形的四个角都是直角; (2)矩形的对角线相等. 2.矩形既是轴对称图形,又是中心对称图形,有两条对称轴. 【课堂练习】 1.矩形ABCD的对角线相交于O,若∠AOB=100°,则∠OAB= °. 2.四边形ABCD的对角线相交于O,OA=OB=OC=OD,则它是 形,若∠AOB=60°,那么AB∶AC= . 3.矩形的短边长为5cm,长边是短边的2倍,则矩形的周长是 ,面积等于 . 4.矩形的两条对角线的夹角为60°,一条对角线与短边的和是15,则对角线长为 , 短边长为 . 5.如图,矩形的周长为24cm,一边中点与对边两顶点边线成直角,则矩形的两邻边分别为 cm和 cm. 6.如图,矩形ABCD的周长是56,对角线相交于O, △OAB与△OBC的差是4,则AD= . 7.矩形的对角线AC、BD相交于O,∠AOB=2∠BOC,若AC=6cm,则AD= . 8.如图,矩形ABCD的对角线相交于O点,AE⊥BD,垂足为E,若∠DAE=4∠BAE,则∠EAC= . 【拓展延伸】 9.如图,BO是直角△ABC斜边上的中线,请以O点为旋转中心,将△ABC旋转180°得一四边形ABCD,试判断ABCD是什么四边形,试说明BO=AC. 10.如图,矩形ABCD中,E是AD中点,(1)判断△BCE是什么三角形?为什么? (2)若∠EBC=70°,求∠BEC的度数. 【总结反思】 1.本节课我学会了: 还有些疑惑: 2.做错的题目有: 原因: 4- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 学案 矩形 及其 性质
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文