人教版高数必修四第7讲:平面向量基本定理及坐标运算(教师版)(.doc
《人教版高数必修四第7讲:平面向量基本定理及坐标运算(教师版)(.doc》由会员分享,可在线阅读,更多相关《人教版高数必修四第7讲:平面向量基本定理及坐标运算(教师版)(.doc(16页珍藏版)》请在咨信网上搜索。
1、平面向量基本定理与坐标运算_1.掌握平面向量的正交分解及其坐标表示;2.会用坐标表示平面向量的加、减与数乘运算.3.会用坐标表示平面向量共线的条件,进而解决一些相关问题.4.了解平面向量的基本定理及其意义.一、平面向量基本定理:1平面向量基本定理:如果,是同一平面内的两个_不共线_不共线向量,那么对于这一平面内的_任一_向量,有且只有_一对实数1,2使=1+2特别提醒: (1)我们把不共线向量、叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量在给出基底、的条件下进行分解;(4)基底给定时,分解形式惟一 1,2是被,唯一确定的数量二、平面向量的坐标表
2、示: 如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个_单位向量_ 、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得,我们把叫做向量的(直角)坐标,记作其中叫做在轴上的坐标,叫做在轴上的坐标,式叫做向量的坐标表示与相等的向量的坐标也为特别地,特别提醒:设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示三、平面向量的坐标运算:(1) 若,则=,= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差(2) 若,则 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标(3)若和实数
3、,则实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标(4)向量平行的充要条件的坐标表示:设=(x1, y1) ,=(x2, y2) 其中 ()的充要条件是 类型一平面向量基本定理的应用【例1】(2012南京质检)如图所示,在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则_. 审题视点 由B,H,C三点共线可用向量,来表示.解析由B,H,C三点共线,可令x(1x),又M是AH的中点,所以x(1x),又.所以x(1x).答案 应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用当基底确定后,任一向量
4、的表示都是唯一的【训练1】 如图,两块斜边长相等的直角三角板拼在一起若xy,则x_,y_.解析以AB所在直线为x轴,以A为原点建立平面直角坐标系如图,令AB2,则(2,0),(0,2),过D作DFAB交AB的延长线于F,由已知得DFBF,则(2, )xy,(2,)(2x,2y)即有解得另解:,所以x1,y.答案1例1 在OAB中,AD与BC交于点M,设=,=,用,表示.BCAOMD 解题思路:若是一个平面内的两个不共线向量,则根据平面向量的基本定理,平面内的任何向量都可用线性表示.本例中向量,可作基底,故可设=m+n,为求实数m,n,需利用向量与共线,向量与共线,建立关于m,n的两个方程.解析
5、:设=m+n,则,点A、M、D共线,与共线,m+2n=1. 而,C、M、B共线,与共线,4m+n=1. 联立解得:m=,n=,练习:1若已知、是平面上的一组基底,则下列各组向量中不能作为基底的一组是 ( )A与 B3与2 C与 D与2BACPNM答案:D 2在ABC中,已知 AMAB =13, ANAC =14,BN与CM交于点P,且,试 用表示.解: AMAB =13, ANAC =14,, , M、P、C三点共线,故可设,tR , 于是, 同理可设设,sR , 由得 ,由此解得 , 类型二平面向量的坐标运算【例2】(2011合肥模拟)已知A(2,4),B(3,1),C(3,4),且3,2.
6、求M,N的坐标和.审题视点 求,的坐标,根据已知条件列方程组求M,N.解A(2,4),B(3,1),C(3,4),(1,8),(6,3)33(1,8)(3,24),22(6,3)(12,6)设M(x,y),则(x3,y4)得M(0,20)同理可得N(9,2),(90,220)(9,18) 利用向量的坐标运算解题,主要就是根据相等的向量坐标相同这一原则,通过列方程(组)进行求解;在将向量用坐标表示时,要看准向量的起点和终点坐标,也就是要注意向量的方向,不要写错坐标【训练2】 在平行四边形ABCD中,AC为一条对角线,若(2,4),(1,3),则()A(2,4) B(3,5)C(3,5) D(2,
7、4)解析由题意得()2(1,3)2(2,4)(3,5)答案B3 若A(0, 1), B(1, 2), C(3, 4) 则-2= 答案:(-3,-3) 解:-2=(1,1)-2(2,2)=(-3,-3)4若M(3, -2) N(-5, -1) 且 , 求P点的坐标;解:设P(x, y) 则(x-3, y+2)=(-8, 1)=(-4, ) P点坐标为(-1, -)类型三平面向量共线的坐标运算【例3】已知a(1,2),b(3,2),是否存在实数k,使得kab与a3b共线,且方向相反?审题视点 根据共线条件求k,然后判断方向解若存在实数k,则kabk(1,2)(3,2)(k3,2k2),a3b(1,
8、2)3(3,2)(10,4)若这两个向量共线,则必有(k3)(4)(2k2)100.解得k.这时kab,所以kab(a3b)即两个向量恰好方向相反,故题设的实数k存在向量共线问题中,一般是根据其中的一些关系求解参数值,如果向量是用坐标表示的,就可以使用两个向量共线的充要条件的坐标表示列出方程,根据方程求解其中的参数值【训练3】 (2011西安质检)已知向量a(1,2),b(2,3),若向量c满足(ca)b,c(ab),则c()A. B.C. D.解析设c(m,n),则ac(1m,2n),ab(3,1)(ca)b,3(1m)2(2n),又c(ab),3mn0,解得m,n.答案D9已知,当实数取何
9、值时,2与24平行?【解析】方法一: 24, 存在唯一实数使2=24)将、的坐标代入上式得(6,24)=14,4)得6=14且24= 4,解得= 1方法二:同法一有2=(24),即(2(24=0与不共线, = 1一、选择题1设e1、e2是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是()Ae1e2和e1e2B3e12e2和4e26e1Ce12e2和e22e1De2和e1e2答案B解析4e26e12(3e12e2),3e12e2与4e26e1共线,不能作为基底2下面给出了三个命题:非零向量a与b共线,则a与b所在的直线平行;向量a与b共线的条件是当且仅当存在实数1、2,使得1a2b
10、;平面内的任一向量都可用其它两个向量的线性组合表示其中正确命题的个数是()A0B1C2D3答案B解析命题两共线向量a与b所在的直线有可能重合;命题平面内的任一向量都可用其它两个不共线向量的线性组合表示故都不正确3给出下列结论:若ab,则|ab|0;对任意向量a、b,|ab|0;若非零向量a、b共线且反向,则|ab|a|.其中正确的有()个()A1B2C3D4答案B解析中有一个为零向量时不成立;中a,b若是相反向量则不成立;、正确,故选B.4已知向量e1、e2不共线,实数x、y满足(xy)e1(2xy)e26e13e2,则xy的值等于()A3B3C6D6答案C解析e1、e2不共线,由平面向量基本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版高数 必修 平面 向量 基本 定理 坐标 运算 教师版 东直门 仉长娜
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。