高等数学(经济数学1)-习题集(含答案).doc
《高等数学(经济数学1)-习题集(含答案).doc》由会员分享,可在线阅读,更多相关《高等数学(经济数学1)-习题集(含答案).doc(35页珍藏版)》请在咨信网上搜索。
1、高等数学(经济数学1)课程习题集西南科技大学成人、网络教育学院 版权所有习题【说明】:本课程高等数学(经济数学1)(编号为01014)共有单选题,填空题1,计算题等多种试题类型,其中,本习题集中有等试题类型未进入。一、单选题1. 幂函数、指数函数、对数函数、三角函数和反三角函数统称( )A、函数 B、初等函数 C、基本初等函数 D、复合函数2. 设 当a=( )时,在上连续A、0 B、1 C、2 D、33. 由函数复合而成的函数为( )A、 B、 C、 D、4. 函数f(x)的定义域为1,3,则函数f(lnx)的定义域为( )A、 B、 C、1,3 D、5. 函数的间断点是( )A、 B、C、
2、 D、6. 不等式的区间表示法是( )A、(-4,6) B、(4,6) C、(5,6) D、(-4,8)7. 求( )A、 B、 C、 D、8. 求( )A、 B、 C、 D、9. 若f(x)的定义域为0,1,则的定义域为( )A、-1,1 B、(-1,1) C、,1 D、-1,10. 求( )A、 B、 C、 D、11. 求( )A、 B、 C、 D、12. 求( )A、 B、 C、 D、13. 求( )A、 B、 C、 D、14. 已知,求( )A、 B、 C、 D、15. 求的定义域( )A、-1,1 B、(-1,1) C、-3,3 D、(-3,3)16. 求函数的定义域( )A、1,2
3、 B、(1,2) C、-1,2 D、(-1,2)17. 判断函数的奇偶性( )A、奇函数 B、偶函数 C、奇偶函数 D、非奇非偶函数18. 求的反函数( )A、 B、 C、 D、19. 求极限的结果是( )A、 B、 C、 D、不存在20. 极限的结果是( )。A、 B、不存在 C、 D、21. 设,则=( )A、 B、C、 D、22. 设,则=( )A、 B、 C、 D、23. 设则=( )A、 B、 C、 D、24. ( )A、1 B、2 C、3 D、425. 设, 则=( )A、 B、 C、0 D、126. 曲线在处的切线正向的夹角为:( )A、 B、 C、 D、27. 设,则=( )A
4、、 B、C、 D、28. 如果函数在区间上的导数( ),那么在区间上是一个常数.A、恒为常数 B、可能为常数 C、恒为零 D、可能为常数29. 设,则=( )A、0 B、-1 C、-2 D、-330. 设 (都是常数),则=( )A、0 B、 C、 D、31. 假定存在,按照导数的定义观察极限,指出=( )A、 B、 C、 D、32. 已知物体的运动规律为(米),则该物体在秒时的速度为( )A、1 B、2 C、3 D、433. 求函数的导数( )A、 B、 C、 D、34. 求曲线在点处的切线方程( )A、 B、 C、 D、35. 求函数的导数( )A、 B、 C、 D、36. 求函数的导数(
5、 )A、 B、 C、 D、37. 求曲线在点处的切线方程( )A、 B、 C、 D、38. 求函数的二阶导数( )A、 B、 C、 D、39. 求函数的二阶导数( )A、 B、 C、 D、40. 求函数的n阶导数( )A、 B、 C、 D、41. 若函数在可导,则它在点处到得极值的必要条件为:( )A、 B、 C、 D、42. 求( )A、0 B、1 C、2 D、343. 求的值为( )A、1 B、 C、 D、44. 求的值为:( )A、1 B、2 C、3 D、445. 求( )A、 B、 C、 D、146. 求( )A、0 B、1 C、2 D、347. 极值反映的是函数的( )性质.A、 单
6、调 B、一般 C、全部 D、局部48. 罗尔定理与拉格朗日定理之间的关系是( )A、没有关系B、前者与后者一样,只是表达形式不同C、前者是后者的特殊情形,加即可D、后者是前者的特殊情形49. 求( )A、0 B、1 C、-1 D、250. 求( )A、0 B、 C、 D、151. 最值可( )处取得。A、区间端点及极值点 B、区间端点 C、极值点 D、无法确定52. 函数在0,6上的最大值为( )A、3 B、4 C、5 D、653. 设,则方程有( )个根A、1 B、2 C、3 D、454. 在上,函数满足拉格朗日中值定理,则( )A、-1 B、0 C、1 D、255. 求( )A、0 B、1
7、 C、 D、不存在56. 求( )。A、0 B、1 C、-1 D、不存在57. 求 ( )。A、0 B、2 C、1 D、358. 求 ( )A、0 B、1 C、2 D、359. 如果函数在区间上的导数恒为零,那么在区间上是一个( )。A、常数 B、恒为零 C、有理数 D、无理数60. 求的值为( )A、1 B、 C、 D、61. 一个已知的函数,有( )个原函数。A、无穷多 B、1 C、2 D、362. 的( )称为的不定积分。A、函数 B、全体原函数 C、原函数 D、基本函数63. 若在某区间上( ),则在该区间上的原函数一定存在。A、可导 B、可微 C、连续 D、可积64. 由可知,在积分
8、曲线族 上横坐标相同的点处作切线,这些切线彼此是( )的。A、无规律 B、存在 C、相交 D、平行65. 求( )A、 B、 C、 D、66. 求( )A、 B、 C、 D、67. 求( )A、 B、 C、 D、68. 求函数的原函数为( )A、 B、 C、 D、69. 求=( )A、 B、 C、 D、70. 求( )A、 B、 C、 D、71. 求=( )A、 B、 C、 D、72. 若,求=( )A、 B、 C、 D、73. 求=( )A、 B、 C、 D、74. 求=( )A、 B、 C、 D、75. 求( )A、 B、 C、 D、76. 求( )A、 B、 C、 D、77. 求( )A
9、、 B、 C、 D、78. 求( )A、 B、 C、 D、79. 求( )A、 B、 C、 D、80. 求=( )A、 B、 C、 D、81. 如果上的最大值与最小值分别为M与m,则有如下估计式:( )A、 B、C、 D、82. 求( )A、 B、 C、 D、83. 求=( )A、0 B、1 C、 D、84. 求( )A、0 B、1 C、 D、85. 求=( )A、0 B、1 C、 D、86. 求=( )A、0 B、1 C、 D、87. =,求=( )A、= B、= C、= D、=88. 求=( )A、0 B、1 C、 D、89. 求=( )A、 B、0 C、1 D、90. 求=( )A、 B
10、、0 C、1 D、91. 求( )A、0 B、1 C、 D、92. 求=( )A、0 B、1 C、 D、93. 求( )A、0 B、1 C、 D、94. 求( )A、0 B、1 C、 D、95. 求( )A、0 B、1 C、 D、96. 求=( )A、0 B、1 C、 D、97. 求=( )A、0 B、1 C、 D、98. 求=( )A、0 B、1 C、 D、99. 求=( )A、 B、 C、 D、100. 求=( )A、 B、 C、 D、二、填空题1101. 若,则。102. 函数y=sin(ln2x)由 复合而成。103. 若f(x)的定义域为0,1,则f(sinx)的定义域为 。104.
11、 若f(x)的定义域为0,1,则f(x+a) (a0)的定义域为 。105. 。106. 。107. 。108. 若,则。109. 函数y=sin(lnx)由 复合而成。110. 。111. 设在处可导,即存在,则 。112. 设在处可导,即存在, 。113. 设,则 。114. 设,则 。115. 曲线在点处的切线方程为 。116. 设,则它的导数为= 。117. 设,则它的导数为= 。118. 设,则它的导数为= 。119. 设,则= 。120. 设,则= 。121. 函数在区间1,2上满足拉格朗日中值定理,则= 。122. = 。123. 函数在区间-1,1上单调 。124. 函数在 上
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 经济 数学 习题集 答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。