初中数学经典几何题及答案.doc
《初中数学经典几何题及答案.doc》由会员分享,可在线阅读,更多相关《初中数学经典几何题及答案.doc(14页珍藏版)》请在咨信网上搜索。
经典难题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) A F G C E B O D 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. A P C D B 求证:△PBC是正三角形.(初二) D2 C2 B2 A2 D1 C1 B1 C B D A A1 3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点. 求证:四边形A2B2C2D2是正方形.(初二) A N F E C D M B 4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F. 求证:∠DEN=∠F. 经典难题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. · A D H E M C B O (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.(初二) · G A O D B E C Q P N M 2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q. 求证:AP=AQ.(初二) 3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题: · O Q P B D E C N M · A 设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q. 求证:AP=AQ.(初二) P C G F B Q A D E 4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点. 求证:点P到边AB的距离等于AB的一半.(初二) 经典难题(三) 1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F. A F D E C B 求证:CE=CF.(初二) 2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F. E D A C B F 求证:AE=AF.(初二) 3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE. D F E P C B A 求证:PA=PF.(初二) O D B F A E C P 4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三) 经典难题(四) 1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5. A P C B 求:∠APB的度数.(初二) 2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.(初二) P A D C B 3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.C B D A (初三) 4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且 AE=CF.求证:∠DPA=∠DPC.(初二) F P D E C B A 经典难题(五) 1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2. A P C B 2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值. A C B P D A C B P D 3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长. E D C B A 4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数. 经典难题(一)答案 1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。 2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得 △DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150 所以∠DCP=300 ,从而得出△PBC是正三角形 3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点, 连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点, 由A2E=A1B1=B1C1= FB2 ,EB2=AB=BC=FC1 ,又∠GFQ+∠Q=900和 ∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2 , 可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 , 又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 , 从而可得∠A2B2 C2=900 , 同理可得其他边垂直且相等, 从而得出四边形A2B2C2D2是正方形。 4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。 经典难题(二) 1.(1)延长AD到F连BF,做OG⊥AF, 又∠F=∠ACB=∠BHD, 可得BH=BF,从而可得HD=DF, 又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM (2)连接OB,OC,既得∠BOC=1200, 从而可得∠BOM=600, 所以可得OB=2OM=AH=AO, 得证。 3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。 由于, 由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。 又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ, ∠AOP=∠AOQ,从而可得AP=AQ。 4.过E,C,F点分别作AB所在直线的高EG,CI,FH。可得PQ=。 由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。 从而可得PQ= = ,从而得证。 经典难题(三) 1.顺时针旋转△ADE,到△ABG,连接CG. 由于∠ABG=∠ADE=900+450=1350 从而可得B,G,D在一条直线上,可得△AGB≌△CGB。 推出AE=AG=AC=GC,可得△AGC为等边三角形。 ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。 又∠EFC=∠DFA=450+300=750. 可证:CE=CF。 2.连接BD作CH⊥DE,可得四边形CGDH是正方形。 由AC=CE=2GC=2CH, 可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150, 又∠FAE=900+450+150=1500, 从而可知道∠F=150,从而得出AE=AF。 3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。 令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。 tan∠BAP=tan∠EPF==,可得YZ=XY-X2+XZ, 即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF , 得到PA=PF ,得证 。 经典难题(四) 1. 顺时针旋转△ABP 600 ,连接PQ ,则△PBQ是正三角形。 可得△PQC是直角三角形。 所以∠APB=1500 。 2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC. 可以得出∠ABP=∠ADP=∠AEP,可得: AEBP共圆(一边所对两角相等)。 可得∠BAP=∠BEP=∠BCP,得证。 3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得: =,即AD•BC=BE•AC, ① 又∠ACB=∠DCE,可得△ABC∽△DEC,既得 =,即AB•CD=DE•AC, ② 由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证。 4.过D作AQ⊥AE ,AG⊥CF ,由==,可得: =,由AE=FC。 可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。 经典难题(五) 1.(1)顺时针旋转△BPC 600 ,可得△PBE为等边三角形。 既得PA+PB+PC=AP++PE+EF要使最小只要AP,PE,EF在一条直线上, 即如下图:可得最小L= ; (2)过P点作BC的平行线交AB,AC与点D,F。 由于∠APD>∠ATP=∠ADP, 推出AD>AP ① 又BP+DP>BP ② 和PF+FC>PC ③ 又DF=AF ④ 由①②③④可得:最大L< 2 ; 由(1)和(2)既得:≤L<2 。 2.顺时针旋转△BPC 600 ,可得△PBE为等边三角形。 既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上, 即如下图:可得最小PA+PB+PC=AF。 既得AF= = = = = = 。 3.顺时针旋转△ABP 900 ,可得如下图: 既得正方形边长L = = 。 4.在AB上找一点F,使∠BCF=600 , 连接EF,DG,既得△BGC为等边三角形, 可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF , 得到BE=CF , FG=GE 。 推出 : △FGE为等边三角形 ,可得∠AFE=800 , 既得:∠DFG=400 ① 又BD=BC=BG ,既得∠BGD=800 ,既得∠DGF=400 ② 推得:DF=DG ,得到:△DFE≌△DGE , 从而推得:∠FED=∠BED=300 。 第 14 页 共 14 页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 经典 几何 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文