高等数学微分方程试题及答案.doc
《高等数学微分方程试题及答案.doc》由会员分享,可在线阅读,更多相关《高等数学微分方程试题及答案.doc(5页珍藏版)》请在咨信网上搜索。
第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: 通解 (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式: 通解 2.变量可分离方程的推广形式 (1)齐次方程 令, 则 二.一阶线性方程及其推广 1.一阶线性齐次方程 它也是变量可分离方程,通解,(为任意常数) 2.一阶线性非齐次方程 用常数变易法可求出通解公式 令 代入方程求出则得 3.伯努利方程 令把原方程化为 再按照一阶线性非齐次方程求解。 4.方程:可化为 以为自变量,为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程 方程类型 解法及解的表达式 通解 令,则,原方程 ——一阶方程,设其解为, 即,则原方程的通解为。 令,把看作的函数,则 把,的表达式代入原方程,得—一阶方程, 设其解为即,则原方程的通解为 。 四.线性微分方程解的性质与结构 我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。 二阶齐次线性方程 (1) 二阶非齐次线性方程 (2) 1.若,为二阶齐次线性方程的两个特解,则它们的线性组合(,为任意常数)仍为同方程的解,特别地,当(为常数),也即与线性无关时,则方程的通解为 2.若,为二阶非齐次线性方程的两个特解,则为对应的二阶齐次线性方程的一个特解。 3.若为二阶非齐次线性方程的一个特解,而为对应的二阶齐次线性方程的任意特解,则为此二阶非齐次线性方程的一个特解。 4.若为二阶非齐次线性方程的一个特解,而为对应的二阶齐次线性方程的通解(,为独立的任意常数)则是此二阶非齐次线性方程的通解。 5.设与分别是与 的特解,则是 的特解。 五.二阶和某些高阶常系数齐次线性方程 1.二阶常系数齐次线性方程 其中,为常数, 特征方程 特征方程根的三种不同情形对应方程通解的三种形式 (1)特征方程有两个不同的实根,则方程的通解为 (2)特征方程有二重根 则方程的通解为 (3)特征方程有共轭复根, 则方程的通解为 2.阶常系数齐次线性方程 其中为常数。 相应的特征方程 特征根与方程通解的关系同二阶情形很类似。 (1)若特征方程有个不同的实根则方程通解 (2)若为特征方程的重实根则方程通解中含有 y= (3)若为特征方程的重共轭复根,则方程通解中含有 由此可见,常系数齐次线性方程的通解完全被其特征方程的根所决定,但是三次及三次以上代数方程的根不一定容易求得,因此只能讨论某些容易求特征方程的根所对应的高阶常系数齐次线性方程的通解。 六、二阶常系数非齐次线性方程 方程: 其中为常数 通解: 其中为对应二阶常系数齐次线性方程的通解上面已经讨论。所以关键要讨论二阶常系数非齐次线性方程的一个特解如何求? 1.其中为次多项式,为实常数, (1)若不是特征根,则令 (2)若是特征方程单根,则令 (3)若是特征方程的重根,则令 2. 或 其中为次多项式,皆为实常数 (1)若不是特征根,则令 (2)若是特征根,则令 例题: 一、齐次方程 1.求的通解2. 二、一阶线形微分方程 1. 2.求微分方程的通解 三、伯努力方程 四、可降阶的高价微分方程 1.求的通解 2. 五、二阶常系数齐次线形微分方程 1. 2., 六、二阶常系数非齐次线形微分方程 1.求的通解 2.求方程的通解 3. 七、作变量代换后求方程的解 1.求微分方程的通解 2. 3. 4. 八、综合题 1.设f(x)=x-,其中f(x)连续,求f(x) 2.已知,,是某二阶线性非齐次常系数微分方程的三个解,求此微分方程及其通解. 3.设内满足以下条件 (1)求所满足的一阶和二阶微分方程(2)求出的表达式 4.设函数y=y(x)在内具有二阶导数,且是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,的解. 5.设是以2为周期的连续函数, (1) 求微分方程的通解 以上这些解中,有没有以2为周期的解?若有,求出,若无,说明理由 6.已知曲线y=f(x)(x>0)是微分方程2y//+y/-y=(4-6x)e-x的一条积分曲线,此曲线通过原点,且在原点处的切线斜率为0,试求:(1)曲线y=f(x)到x轴的最大距离。(2)计算 九、微分方程的几何和物理应用 1.设函数二阶可导,且过曲线上任意一点作该曲线的切线及轴的垂线,上述两直线与轴所围成的三角形的面积记为区间上以为曲边的曲边梯形面积记为,并设恒为1,求此曲线的方程。 2.设曲线的极坐标方程为,为任一点,为上一定点,若极径,与曲线所围成的曲边扇形面积值等于上两点间弧长值的一半,求曲线的方程。 3.有一在原点处与x轴相切并在第一象限的光滑曲线,P(x,y)为曲线上的任一点。设曲线在原点与P点之间的弧长为S1,曲线在P 点处的切线在P点与切线跟y轴的交点之间的长度为S2,且=,求该曲线的方程。 4.设函数f(x)在上连续,若曲线y=f(x),直线x=1,x=t(t>1)与x轴围成平面图形绕x轴旋转一周所成旋转体的体积V(t)=,试求y=f(x)所满足的微分方程,并求的解. 5.一个半球体状的雪球,其体积融化的速率与半球面面积S成正比,比例常数,假设在融化过程中雪堆始终保持半球体状,已知半径为的雪堆开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时。 6.有一房间容积为100,开始时房间空气中含有二氧化碳0.12%,为了改善房间的空气质量,用一台风量为10/分的排风扇通入含0.04%的二氧化碳的新鲜空气,同时以相同的风量将混合均匀的空气排出,求排出10分钟后,房间中二氧化碳含量的百分比? 7.有一容积为500的水池,原有100的清水,现在每分钟放进2浓度为50%的某溶液,同时每分钟放出1溶液,试求当水池充满时池中溶液浓度。 8.某湖泊的水量为V,每年排入湖泊内含污染物A的污水量为,流入湖泊内不含污染物A的污水量为,流出湖泊的水量为,已知1999年底中湖中A的含量为,超过国家规定指标,为了治理污染,从2000年初起,限制排入湖泊中含A污水的浓度不超过,问至多需要经过多少年,湖泊中污染物A的含量才可降至以内。(设湖水中A的浓度是均匀的)。 9.已知某车间的容积为30×30×6 ,其中的空气含0.12%的二氧化碳,现以含二氧化碳0.04%的新鲜空气输入,问每分钟应输入多少,才能在30分钟后使车间空气中二氧化碳的含量不超过0.06%,(假定输入的新鲜空气与原有空气很快混合均匀,且以相同流量排出)。 10.有一平底容器,其内侧壁是由曲线绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m. 根据设计要求,当以的速率向容器内注入液体时, 液面的面积将以的速率均匀扩大(假设注入液体前容器内无液体). (1) 根据t时刻液面的面积,写出t与之间的关系式; (2) 求曲线的方程. 5 / 5- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 微分方程 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文