高中数学导数与应用知识点汇总.doc
《高中数学导数与应用知识点汇总.doc》由会员分享,可在线阅读,更多相关《高中数学导数与应用知识点汇总.doc(10页珍藏版)》请在咨信网上搜索。
. . 导数知识点归纳及其应用 ●知识点归纳 一、相关概念 1.导数的概念 函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)-f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|。 即f’(x)==。 说明: (1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。 (2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f(x)在点x处的导数的步骤: ① 求函数的增量=f(x+)-f(x); ② 求平均变化率=; ③ 取极限,得导数f’(x)=。 例:设f(x)= x|x|, 则f′( 0)= . [解析]:∵ ∴f′( 0)=0 2.导数的几何意义 函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x))处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。 相应地,切线方程为y-y=f/(x)(x-x)。 例:在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是 ( ) A.3 B.2 C.1 D.0 [解析]:切线的斜率为 又切线的倾斜角小于,即 故 解得: 故没有坐标为整数的点 3.导数的物理意义 如果物体运动的规律是s=s(t),那么该物体在时刻t的瞬间速度v=(t)。 如果物体运动的速度随时间的变化的规律是v=v(t),则该物体在时刻t的加速度a=v′(t)。 例。汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图像可能是( ) s t O A. s t O s t O s t O B. C. D. 答:A。 练习:已知质点M按规律做直线运动(位移单位:cm,时间单位:s)。 (1) 当t=2,时,求; (2) 当t=2,时,求; (3) 求质点M在t=2时的瞬时速度。 答案:(1)8.02(2)8.002;(3)8 二、导数的运算 1.基本函数的导数公式: ①(C为常数) ② ③; ④; ⑤ ⑥; ⑦; ⑧. 例1:下列求导运算正确的是 ( ) A.(x+ B.(log2x)′= C.(3x)′=3xlog3e D. (x2cosx)′=-2xsinx 例2:设f0(x) = sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x) = fn′(x),n∈N,则f2005(x)= ( ) A.sinx B.-sinx C.cosx D.-cosx 2.导数的运算法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即: 若C为常数,则.即常数与函数的积的导数等于常数乘以函数的导数: 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:(v0)。 例:设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,>0.且g(3)=0.则不等式f(x)g(x)<0的解集是 ( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0, 3) C. (-∞,- 3)∪(3,+∞) D. (-∞,- 3)∪(0, 3) [解析]:∵当x<0时,>0 ,即 ∴当x<0时,f(x)g(x)为增函数, 又g(x)是偶函数且g(3)=0,∴g(-3)=0,∴f(-3)g(-3)=0 故当时,f(x)g(x)<0,又f(x)g(x)是奇函数, 当x>0时,f(x)g(x)为增函数,且f(3)g(3)=0 故当时,f(x)g(x)<0 故选D 3.复合函数的导数 形如y=f的函数称为复合函数。复合函数求导步骤: 分解——>求导——>回代。 法则:y'|= y'| ·u'|或者. 练习:求下列各函数的导数: (1) (2) (3) (4) 三、导数的应用 1.函数的单调性与导数 (1)设函数在某个区间(a,b)可导,如果,则在此区间上为增函数;如果,则在此区间上为减函数。 (2)如果在某区间内恒有,则为常数。 例:函数是减函数的区间为 ( ) A. B. C. D.(0,2) 2.极点与极值: 曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 例:函数已知时取得极值,则= ( ) A.2 B.3 C.4 D.5 3.最值: 在区间[a,b]上连续的函数f在[a,b]上必有最大值与最小值。但在开区间(a,b)内连续函数f(x)不一定有最大值,例如。 求最值步骤: ①求函数ƒ在(a,b)内的极值;②求函数ƒ在区间端点的值ƒ(a)、ƒ(b); ③将函数ƒ的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。 说明:(1)函数的最大值和最小值是一个整体性的概念,最大值必须是整个区间上所有函数值中的最大值,最小值必须在整个区间上所有函数值中的最小值。 (2)函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附件的函数值得出来的。函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点处必定是极值。 例:函数在闭区间[-3,0]上的最大值、最小值分别是 . ●经典例题选讲 例1. 已知函数的图象如图所示(其中 是函数的导函数),下面四个图象中的图象大致是 ( ) 例2.设恰有三个单调区间,试确定a的取值范围,并求其单调区间。 例3. 已知函数的图象过点P(0,2),且在点M处的切线方程为. (Ⅰ)求函数的解析式; (Ⅱ)求函数的单调区间. 例4. 设函数,已知是奇函数。 (Ⅰ)求、的值。 (Ⅱ)求的单调区间与极值。 例5. 已知f(x)=在x=1,x=时,都取得极值。 (1)求a、b的值。 (2)若对,都有恒成立,求c的取值范围。 例6. 已知是函数的一个极值点,其中, (I)求与的关系式; (II)求的单调区间; (III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围. 例7:(2009天津理20)已知函数其中 (1) 当时,求曲线处的切线的斜率;w.w.w.k.s.5.u.c.o.m (2) 当时,求函数的单调区间与极值。w.w.w.k.s.5.u.c.o.m 本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。满分12分。 参考答案: 例1 [解析]:由函数的图象可知: 当时, <0,>0,此时增 当时,>0,<0,此时减 当时,<0,<0,此时减 当时,>0,>0,此时增,故选C 例2. 解: 若,对恒成立,此时只有一个单调区间,矛盾 若, ∴ ,也只有一个单调区间,矛盾 若 ∵ ,此时恰有三个单调区间 ∴ 且单调减区间为和,单调增区间为 例3 . 解:(Ⅰ)由的图象经过P(0,2),知d=2, 所以 由在处的切线方程是,知 故所求的解析式是 (Ⅱ) 解得 当 当 故内是增函数, 在内是减函数,在内是增函数. 例4. 解:(Ⅰ)∵,∴。从而=是 一个奇函数,所以得,由奇函数定义得; (Ⅱ)由(Ⅰ)知,从而,由此可知, 和是函数是单调递增区间;是函数是单调递减区间; 在时,取得极大值,极大值为, 在时,取得极小值,极小值为。 例5. 解:(1)由题意f/(x)=的两个根分别为1和 由韦达定理,得:1=, 则, (2)由(1),有f(x)=,f/(x)= 当时,,当时,,当时,, 当时,有极大值,, ∴ 当,的最大值为 对,都有恒成立,∴, 解得或 例6. 解:(I)因为是函数的一个极值点, 所以,即,所以 (II)由(I)知,= 当时,有,当变化时,与的变化如下表: 1 0 0 调调递减 极小值 单调递增 极大值 单调递减 故有上表知,当时,在单调递减, 在单调递增,在上单调递减. (III)由已知得,即 又所以即① 设,其函数开口向上,由题意知①式恒成立, 所以解之得 又 所以 即的取值范围为 例7. 解:(I) (II) w.w.w.k.s.5.u.c.o.m 以下分两种情况讨论。 (1)>,则<.当变化时,的变化情况如下表: + 0 — 0 + ↗ 极大值 ↘ 极小值 ↗ w.w.w.k.s.5.u.c.o.m (2)<,则>,当变化时,的变化情况如下表: + 0 — 0 + ↗ 极大值 ↘ 极小值 ↗ 欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。赠语; 1、如果我们做与不做都会有人笑,如果做不好与做得好还会有人笑,那么我们索性就做得更好,来给人笑吧! 2、现在你不玩命的学,以后命玩你。3、我不知道年少轻狂,我只知道胜者为王。4、不要做金钱、权利的奴隶;应学会做“金钱、权利”的主人。5、什么时候离光明最近?那就是你觉得黑暗太黑的时候。6、最值得欣赏的风景,是自己奋斗的足迹。 7、压力不是有人比你努力,而是那些比你牛×几倍的人依然比你努力。 Word格式- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 导数 应用 知识点 汇总
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文