中考数学专题复习扇形弧长及面积要点.doc
《中考数学专题复习扇形弧长及面积要点.doc》由会员分享,可在线阅读,更多相关《中考数学专题复习扇形弧长及面积要点.doc(22页珍藏版)》请在咨信网上搜索。
2017年中考数学专题复习扇形弧长及面积 一.选择题(共10小题) 1.如图,要拧开一个边长为a(a=6mm)的正六边形,扳手张开的开口b至少为( ) A.4mm B.6mm C.4mm D.12mm 2.平面直角坐标系中,正六边形ABCDEF的起始位置如图1所示,边AB在x轴上,现将正六边形沿x轴正方向无滑动滚动,第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD落在x轴上,如此继续下去.则第2016次滚动后,落在x轴上的是( ) A.边DE B.边EF C.边FA D.边AB 3.已知⊙O的半径为r,其内接正六边形,正四边形,正三角形的边长分别为a,b,c,则a:b:c的值为( ) A.1:2:3 B.3:2:1 C.1:: D.::1 4.如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为( ) A.π B.2π C.4π D.8π 5.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是( ) A.π B. C.3+π D.8﹣π 6.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为( ) A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4 7.如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为( ) A. B.3π C. D.2π 8.如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( ) A.12cm B.6cm C.3cm D.2cm 9.如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是( ) A. B. C. D. 10.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为( ) A.3 B.6 C.3π D.6π 二.解答题(共7小题) 11.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E. (1)求OE的长; (2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S. 12.如图所示,已知圆锥底面半径r=10cm,母线长为40cm. (1)求它的侧面展开图的圆心角和表面积. (2)若一甲出从A点出发沿着圆锥侧面行到母线SA的中点B,请你动脑筋想一想它所走的最短路线是多少?为什么? 13.如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E. (1)求弧BE所对的圆心角的度数. (2)求图中阴影部分的面积(结果保留π). 14.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,经过点C,求: (1)的长. (2)阴影部分的面积. 15.如图,已知点A、B、C、D均在半径为3的已知圆上,AD∥BC,BD平分∠ABC,∠C=60°. (1)求四边形ABCD的周长. (2)求图中阴影部分的面积(结果保留π). 16.如图所示,已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则: (1)求出围成的圆锥的侧面积为多少? (2)求出该圆锥的底面半径是多少? 17.如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动. (1)请在图1中画出光点P经过的路径; (2)求光点P经过的路径总长(结果保留π). 2016年11月05日546730637的初中数学组卷 参考答案与试题解析 一.选择题(共10小题) 1.(2016•河西区模拟)如图,要拧开一个边长为a(a=6mm)的正六边形,扳手张开的开口b至少为( ) A.4mm B.6mm C.4mm D.12mm 【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解. 【解答】解:设正多边形的中心是O,其一边是AB, ∴∠AOB=∠BOC=60°, ∴OA=OB=AB=OC=BC, ∴四边形ABCO是菱形, ∵AB=6mm,∠AOB=60°, ∴cos∠BAC=, ∴AM=6×=3(mm), ∵OA=OC,且∠AOB=∠BOC, ∴AM=MC=AC, ∴AC=2AM=6(mm). 故选B. 2.(2016•曲靖模拟)平面直角坐标系中,正六边形ABCDEF的起始位置如图1所示,边AB在x轴上,现将正六边形沿x轴正方向无滑动滚动,第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD落在x轴上,如此继续下去.则第2016次滚动后,落在x轴上的是( ) A.边DE B.边EF C.边FA D.边AB 【分析】由正六边形ABCDEF一共有6条边,即6次一循环;易得第2016次滚动后,与第六次滚动后的结果一样,继而求得答案. 【解答】解:∵正六边形ABCDEF一共有6条边,即6次一循环; ∴2016÷6=336, ∵第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD落在x轴上,如此继续下去,第六次滚动后,边AB落在x轴上, ∴第2016次滚动后,落在x轴上的是:边AB. 故选D. 3.(2016•兰州模拟)已知⊙O的半径为r,其内接正六边形,正四边形,正三角形的边长分别为a,b,c,则a:b:c的值为( ) A.1:2:3 B.3:2:1 C.1:: D.::1 【分析】根据题意画出图形,再由正多边形的性质及直角三角形的性质求解即可. 【解答】解:如图1所示, 在正三角形ABC中,连接OB,过O作OD⊥BC于D, 则∠OBC=30°,BD=OB•cos30°=r, 故a=BC=2BD=r; 如图2所示, 在正方形ABCD中,连接OB、OC,过O作OE⊥BC于E, 则△OBE是等腰直角三角形, 2BE2=OB2,即BE=r, 故b=BC=r; 如图3所示, 在正六边形ABCDEF中,连接OA、OB,过O作OG⊥AB,则△OAB是等边三角形, 故AG=OA•cos60°=r, c=AB=2AG=r, ∴圆内接正三角形、正方形、正六边形的边长之比r:r:r=::1. 故选:C. 4.(2016•阿坝州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为( ) A.π B.2π C.4π D.8π 【分析】由每个小正方形的边长都为1,可求得OA长,然后由弧长公式,求得答案. 【解答】解:∵每个小正方形的边长都为1, ∴OA=4, ∵将△AOB绕点O顺时针旋转90°得到△A′OB′, ∴∠AOA′=90°, ∴A点运动的路径的长为:=2π. 故选B. 5.(2016•桂林)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是( ) A.π B. C.3+π D.8﹣π 【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可. 【解答】解:作DH⊥AE于H, ∵∠AOB=90°,OA=3,OB=2, ∴AB==, 由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA, ∴DH=OB=2, 阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积 =×5×2+×2×3+﹣ =8﹣π, 故选:D. 6.(2016•深圳)如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为( ) A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4 【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积,依此列式计算即可求解. 【解答】解:∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点, ∴∠COD=45°, ∴OC==4, ∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积 =×π×42﹣×(2)2 =2π﹣4. 故选:A. 7.(2016•朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为( ) A. B.3π C. D.2π 【分析】圆心角之和等于n边形的内角和(n﹣2)×180°,由于半径相同,根据扇形的面积公式S=计算即可求出圆形中的空白面积,再用5个圆形的面积减去圆形中的空白面积可得阴影部分的面积. 【解答】解:n边形的内角和(n﹣2)×180°, 圆形的空白部分的面积之和S==π=π=π. 所以图中阴影部分的面积之和为:5πr2﹣π=5π﹣π=π. 故选:C. 8.(2016•荆门)如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( ) A.12cm B.6cm C.3cm D.2cm 【分析】圆的半径为12,求出AB的长度,用弧长公式可求得弧BC的长度,圆锥的底面圆的半径=圆锥的弧长÷2π. 【解答】解:AB===12cm, ∴==6π ∴圆锥的底面圆的半径=6π÷(2π)=3cm. 故选C. 9.(2016•贵港)如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是( ) A. B. C. D. 【分析】根据扇形的圆心角的度数和直径BC的长确定扇形的半径,然后确定扇形的弧长,根据圆锥的底面周长等于扇形的弧长列式求解即可. 【解答】解:如图,连接AO,∠BAC=120°, ∵BC=2,∠OAC=60°, ∴OC=, ∴AC=2, 设圆锥的底面半径为r,则2πr==π, 解得:r=, 故选B. 10.(2016•泉州)如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为( ) A.3 B.6 C.3π D.6π 【分析】直接根据弧长公式即可得出结论. 【解答】解:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形, ∴2πr=×2π×10,解得r=6. 故选B. 二.解答题(共7小题) 11.(2017•博兴县模拟)如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E. (1)求OE的长; (2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S. 【分析】(1)根据∠D=60°,可得出∠B=60°,继而求出BC,判断出OE是△ABC的中位线,就可得出OE的长; (2)连接OC,将阴影部分的面积转化为扇形FOC的面积. 【解答】解:(1)∵∠D=60°, ∴∠B=60°(圆周角定理), 又∵AB=6, ∴BC=3, ∵AB是⊙O的直径, ∴∠ACB=90°, ∵OE⊥AC, ∴OE∥BC, 又∵点O是AB中点, ∴OE是△ABC的中位线, ∴OE=BC=; (2)连接OC, 则易得△COE≌△AFE, 故阴影部分的面积=扇形FOC的面积, S扇形FOC==π. 即可得阴影部分的面积为π. 12.(2015秋•崆峒区期末)如图所示,已知圆锥底面半径r=10cm,母线长为40cm. (1)求它的侧面展开图的圆心角和表面积. (2)若一甲出从A点出发沿着圆锥侧面行到母线SA的中点B,请你动脑筋想一想它所走的最短路线是多少?为什么? 【分析】(1)利用圆锥的弧长等于底面周长得到圆锥的侧面展开图的圆心角;圆锥表面积=底面积+侧面积=π×底面半径2+π×底面半径×母线长; (2)最短路线应放在平面内,构造直角三角形,求两点之间的线段的长度. 【解答】解:(1)=2π×10, 解得n=90. 圆锥侧面展开图的表面积=π×102+π×10×40=500πcm2. (2)如右图,由圆锥的侧面展开图可见,甲虫从A点出发沿着圆锥侧面绕行到母线SA的中点B所走的最短路线是线段AB的长. 在Rt△ASB中,SA=40,SB=20, ∴AB=20(cm). ∴甲虫走的最短路线的长度是20cm. 13.(2015秋•江都市期中)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E. (1)求弧BE所对的圆心角的度数. (2)求图中阴影部分的面积(结果保留π). 【分析】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠EAB=90°; (2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积. 【解答】解:(1)连接OE, ∵四边形ABCD为正方形, ∴∠EAB=45°, ∴∠EOB=2∠EAB=90°; (2)由(1)∠EOB=90°, 且AB=4,则OA=2, ∴S扇形AOE==π,S△AOE=OA2=2, ∴S弓形=S扇形AOE﹣S△AOE=π﹣2, 又∵S△ACD=AD•CD=×4×4=8, ∴S阴影=8﹣(π﹣2)=10﹣π. 14.(2015秋•嵊州市校级月考)如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,经过点C,求: (1)的长. (2)阴影部分的面积. 【分析】(1)根据扇形的弧长公式:l=计算即可; (2)作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可. 【解答】解:(1)的长为:=; (2)作OM⊥BC,ON⊥AC. ∵CA=CB,∠ACB=90°,点O为AB的中点, ∴OC=AB=1,四边形OMCN是正方形,OM=, 则扇形FOE的面积是:=. ∵OA=OB,∠AOB=90°,点D为AB的中点, ∴OC平分∠BCA, 又∵OM⊥BC,ON⊥AC, ∴OM=ON, ∵∠GOH=∠MON=90°, ∴∠GOM=∠HON, 则在△OMG和△ONH中, , ∴△OMG≌△ONH(AAS), ∴S四边形OGCH=S四边形OMCN=. 则阴影部分的面积是:﹣. 15.(2014秋•金华校级期中)如图,已知点A、B、C、D均在半径为3的已知圆上,AD∥BC,BD平分∠ABC,∠C=60°. (1)求四边形ABCD的周长. (2)求图中阴影部分的面积(结果保留π). 【分析】(1)先根据平行线的性质得出=,故可得出∠ABC=∠C=60°,连接OA,OB,可得出△OCD,△OAB与△OAD均为等边三角形,故可得出AD=AB=CD=3,由此可得出结论; (2)由(1)知,AD=AB=OB=OA=3,故可得出四边形ABOD是菱形,再由SAS定理得出△ABE≌△ODE,故S阴影=S扇形AOD,由此可得出结论. 【解答】解:(1)∵AD∥BC,∠C=60°, ∴=, ∴∠ABC=∠C=60°. 连接OA,OB, ∵OC=OD=3,∠C=60°, ∴△OCD是等边三角形. 同理可得,△OAB与△OAD均为等边三角形, ∴AD=AB=CD=3, ∴四边形ABCD的周长=BC+CD+AD+AB=6+3+3+3=15; (2)∵由(1)知,AD=AB=OB=OA=3, ∴四边形ABOD是菱形, ∴AE=OE,BE=DE, 在△ABE与△ODE中, ∵ ∴△ABE≌△ODE(SAS), ∴S阴影=S扇形AOD==. 16.(2014秋•霞山区校级期中)如图所示,已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则: (1)求出围成的圆锥的侧面积为多少? (2)求出该圆锥的底面半径是多少? 【分析】(1)根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算; (2)根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式计算. 【解答】解:(1)圆锥的侧面积==12π(cm2); (2)该圆锥的底面半径为r, 根据题意得2πr=, 解得r=2. 即圆锥的底面半径为2cm. 17.(2010•河北)如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动. (1)请在图1中画出光点P经过的路径; (2)求光点P经过的路径总长(结果保留π). 【分析】(1)按图2中的程序旋转一一找到对应点,第一次是绕点A顺时针旋转90°,得到对应点,再绕点B顺时针旋转90°,得到对应点.再绕点C顺时针旋转90°,得到对应点,再绕点D顺时针旋转90°,得到对应点即可. (2)从中可以看出它的路线长是4段弧长,根据弧长公式计算即可. 【解答】解:(1)如图; (2)∵, ∴点P经过的路径总长为6π. 第22页(共22页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 复习 扇形 面积 要点
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文