全国中考数学分类解析汇编专题5:动点问题.doc
《全国中考数学分类解析汇编专题5:动点问题.doc》由会员分享,可在线阅读,更多相关《全国中考数学分类解析汇编专题5:动点问题.doc(94页珍藏版)》请在咨信网上搜索。
2 012年全国中考数学分类解析汇编 专题5:动点问题 一、选择题 1. (2012北京市4分) 小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B 跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单 位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定 位置可能是图1中的【 】 A.点M B.点N C.点P D.点Q 【答案】D。 【考点】动点问题的函数图象. 【分析】分别在点M、N、P、Q的位置,结合函数图象进行判断,利用排除法即可得出答案: A、在点M位置,则从A至B这段时间内,弧上每一点与点M的距离相等,即y不随时间的变化改变,与函数图象不符,故本选项错误; B、在点N位置,则根据矩形的性质和勾股定理,NA=NB=NC,且最大,与函数图象不符,故本选项错误; C、在点P位置,则PC最短,与函数图象不符,故本选项错误; D、在点P位置,如图所示,①以Q为圆心,QA为半径画圆交于点E,其中y最大的点是AE的中垂线与弧的交点H;②在弧上,从点E到点C上,y逐渐减小;③QB=QC,即,且BC的中垂线QN与BC的交点F是y的最小值点。经判断点Q符合函数图象,故本选项正确。 故选D。 2. (2012浙江嘉兴、舟山4分)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是【 】 A. B. C. D. 【答案】D。 【考点】动点问题的函数图象。 【分析】因为动点P按沿折线A→B→D→C→A的路径运动,因此,y关于x的函数图象分为四部分:A→B,B→D,D→C,C→A。 当动点P在A→B上时,函数y随x的增大而增大,且y=x,四个图象均正确。 当动点P在B→D上时,函数y在动点P位于BD中点时最小,且在中点两侧是对称的,故选项B错误。 当动点P在D→C上时,函数y随x的增大而增大,故选项A,C错误。 当动点P在C→A上时,函数y随x的增大而减小。故选项D正确。故选D。 3. (2012浙江温州4分)如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是【 】 A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小 【答案】C。 【考点】动点问题的函数图象。 【分析】如图所示,连接CM,∵M是AB的中点, ∴S△ACM=S△BCM=S△ABC, 开始时,S△MPQ=S△ACM=S△ABC; 由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=S△ABC; 结束时,S△MPQ=S△BCM=S△ABC。 △MPQ的面积大小变化情况是:先减小后增大。故选C。 4. (2012江苏无锡3分)如图,以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,P是⊙M上异于A.B的一动点,直线PA.PB分别交y轴于C.D,以CD为直径的⊙N与x轴交于E、F,则EF的长【 】 A. 等于4 B. 等于4 C. 等于6 D. 随P点 【答案】C。 【考点】圆周角定理,三角形内角和定理,相似三角形的判定和性质,垂径定理,勾股定理。 【分析】 连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x, ∵以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点, ∴OA=4+5=9,0B=5﹣4=1。 ∵AB是⊙M的直径,∴∠APB=90°。 ∵∠BOD=90°,∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°。 ∵∠PBA=∠OBD,∴∠PAB=∠ODB。 ∵∠APB=∠BOD=90°,∴△OBD∽△OCA。∴,即,即r2﹣x2=9。 由垂径定理得:OE=OF, 由勾股定理得:OE2=EN2﹣ON2=r2﹣x2=9。∴OE=OF=3,∴EF=2OE=6。 故选C。 5. (2012湖北黄冈3分)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB方向以 每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm 的速度向终点C 运动,将 △PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPCP′为菱形,则t的值为【 】 A. B. 2 C. D. 4 【答案】B。 【考点】动点问题,等腰直角三角形的性质,翻折对称的性质,菱形的性质,矩形。 【分析】如图,过点P作PD⊥AC于点D,连接PP′。 由题意知,点P、P′关于BC对称,∴BC垂直平分PP′。 ∴QP=QP′,PE=P′E。 ∴根据菱形的性质,若四边形QPCP′是菱形则CE=QE。 ∵∠C=90°,AC=BC,∴∠A=450。 ∵AP=t,∴PD= t。 易得,四边形PDCE是矩形,∴CE=PD= t,即CE=QE= t。 又BQ= t,BC=6,∴3 t=6,即t=2。 ∴若四边形QPCP′为菱形,则t的值为2。故选B。 6. (2012四川攀枝花3分)如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC运动,到达C点时停止;F点沿OC运动,到达C点是停止,它们运动的速度都是每秒1个单位长度.设E运动秒x时,△EOF的面积为y(平方单位),则y关于x的函数图象大致为【 】 A.B.C.D. 【答案】 C。 【考点】动点问题的函数图象,勾股定理,相似三角形的判定和性质,抛物线和直线的性质。 【分析】如图,过点A作AG⊥OC于点G。 ∵D(5,4),AD=2,∴OC=5,CD=4,OG=3。 ∴根据勾股定理,得OA=5。 ∵点E、F的运动的速度都是每秒1个单位长度, ∴点E运动x秒(x<5)时,OE=OF=x。 ∴当点E在OA上运动时,点F在OC上运动,当点E在AD和DC上运动时,点F在点C停止。 (1)当点E在OA上运动,点F在OC上运动时,如图,作EH⊥OC于点H。 ∴EH∥AG。∴△EHO∽△AGO。∴,即。 ∴。∴。 此时,y关于x的函数图象是开口向上的抛物线。 故选项A.B选项错误。 (2)当点E在AD上运动,点F在点C停止时,△EOF的面积不变。 ∴。 (3)当点E在DC上运动,点F在点C停止时,如图。 EF=OA+AD+DC﹣x =11﹣x,OC=5。 ∴。 此时,y关于x的函数图象是直线。 故选项D选项错误,选项C正确。故选C。 7. (2012四川内江3分)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿的方向运动,到达点C时停止,设运动时间为x(秒),,则y关于x的函数的图像大致为【 】 A. B. C. D. 【答案】C。 【考点】动点问题的函数图象,正三角形的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理。 【分析】如图,过点C作CD垂直AB于点D,则 ∵正△ABC的边长为3,∴∠A=∠B=∠C=60°,AC=3。 ∴AD=,CD=。 ①当0≤x≤3时,即点P在线段AB上时,AP=x,PD=(0≤x≤3)。 ∴(0≤x≤3)。 ∴该函数图象在0≤x≤3上是开口向上的抛物线。 ②当3<x≤6时,即点P在线段BC上时,PC=(6-x)(3<x≤6); ∴y=(6-x)2=(x-6)2(3<x≤6), ∴该函数的图象在3<x≤6上是开口向上的抛物线。 综上所述,该函数为。符合此条件的图象为C。故选C。 8. (2012辽宁鞍山3分)如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是【 】 A. B. C. D. 【答案】B。 【考点】动点问题的函数图象。 【分析】分别求出点P在DE、AD、AB上运动时,S与t的函数关系式,结合选项即可得出答案: 根据题意得:当点P在ED上运动时,S=BC•PE=2t; 当点P在DA上运动时,此时S=8; 当点P在线段AB上运动时,S=BC(AB+AD+DE-t)=5-t。 结合选项所给的函数图象,可得B选项符合。故选B。 9. (2012辽宁铁岭3分)如图,□ABCD的AD边长为8,面积为32,四个全等的小平行四边形对称中心分别在□ABCD的顶点上,它们的各边与□ABCD的各边分别平行,且与□ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是【 】 A. B. C. D. 【答案】D。 【考点】动点问题的函数图象,平行四边形的性质,相似多边形的性质。 【分析】∵四个全等的小平行四边形对称中心分别在□ABCD的顶点上, ∴阴影部分的面积的和等于一个小平行四边形的面积。 ∵□ABCD的AD边长为8,面积为32,小平行四边形的一边长为x,阴影部分的面积的和为y,且小平行四边形与□ABCD相似, ∴,即。 又∵0<x≤8,∴纵观各选项,只有D选项图象符合y与x之间的函数关系的大致图象。故选D。 10. (2012辽宁营口3分)如图,菱形ABCD的边长为2,∠B=.动点P从点B出发,沿B-C-D的路线向点D运动.设△ABP的面积为(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为,则与之间函数关系的图像大致为【 】 【答案】C。 【考点】动点问题的函数图象,菱形的性质,锐角三角函数定义,特殊角的三角函数值。 【分析】当点P在BC上运动时,如图,△ABP的高PE=BPsin∠B=, ∴△ABP的面积。 当点P在BC上运动时,如图,△ABP的高PF=BCsin∠B=1, ∴△ABP的面积。 因此,观察所给选项,只有C符合。故选C。 11. (2012贵州六盘水3分)如图为反比例函数在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为【 】 A. 4 B. 3 C. 2 D. 1 【答案】A。 【考点】反比例函数综合题,矩形的判定和性质,配方法的应用,函数的最值。 【分析】∵反比例函数在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C. ∴四边形OBAC为矩形。 设宽BO=x,则AB=, 则。 ∴四边形OBAC周长的最小值为4。故选A。 12. (2012贵州黔南4分)为做好“四帮四促”工作,黔南州某局机关积极倡导“挂帮一日捐”活动。切实帮助贫困村民,在一日捐活动中,全局50名职工积极响应,同时将所捐款情况统计并制成统计图,根据图提供的信息,捐款金额的众数和中位数分别是【 】 A.20,20 B.30,20 C.30,30 D.20,30 【答案】C。 【考点】众数,中位数。 【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是30,故这组数据的众数为30。 中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据的中位数是第25和26名职工捐款金额的平均数,(30+30)÷2=30。 故选C。 13. (2012山东临沂3分)如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为【 】 A. B. C. D. 【答案】B。 【考点】动点问题的函数图象。 【分析】①0≤x≤4时,y=S△ABD﹣S△APQ=×4×4﹣•x•x=﹣x2+8, ②4≤x≤8时,y=S△BCD﹣S△CPQ=×4×4﹣•(8﹣x)•(8﹣x)=﹣(8﹣x)2+8, ∴y与x之间的函数关系可以用两段开口向下的二次函数图象表示,纵观各选项,只有B选项图象符合。故选B。 14. (2012山东烟台3分)如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与A,B重合).过Q作QM⊥PA于M,QN⊥PB于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是【 】 A. B. C. D. 【答案】D。 【考点】动点问题的函数图象。 【分析】如图,连接PQ,作PE⊥AB垂足为E, ∵过Q作QM⊥PA于M,QN⊥PB于N, ∴S△PAB=PE×AB,S△PAB=S△PAQ+S△PQB=×QN•PB+×PA×MQ。 ∵矩形ABCD中,P为CD中点,∴PA=PB。 ∵QM与QN的长度和为y, ∴S△PAB=S△PAQ+S△PQB=×QN×PB+×PA×MQ=PB(QM+QN)=PBy。 ∴S△PAB=PE×AB=PBy,∴。 ∵PE=AD,∴PB,AB,PB都为定值。 ∴y的值为定值,符合要求的图形为D。故选D。 15. (2012广西桂林3分)如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位 长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运 动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t 的函数关系的图象是【 】 A. B. C.D. 【答案】D。 【考点】动点问题的函数图象,正方形的性质。 【分析】∵动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动, ∴点Q运动到点C的时间为4÷2=2秒。 由题意得,当0≤t≤2时,即点P在AB上,点Q在BC上,AP=t,BQ=2t, ,为开口向上的抛物线的一部分。 当2<t≤4时,即点P在AB上,点Q在DC上,AP=t,AP上的高为4, ,为直线(一次函数)的一部分。 观察所给图象,符合条件的为选项D。故选D。 16. (2012广西来宾3分)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是【 】 A.30° B.45° C.60° D.90° 【答案】A。 【考点】动点问题,切线的性质,锐角三角函数定义,特殊角的三角函数值。 【分析】如图,当点P运动到点P′,即AP′与⊙O相切时,∠OAP最大。 连接O P′,则A P′⊥O P′,即△AO P′是直角三角形。 ∵OB=AB,OB= O P′,∴OA=2 O P′。 ∴。∴∠OAP′=300,即∠OAP的最大值是=300。故选A。 17. (2012甘肃白银3分)如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是【 】 A.B.C.D. 【答案】 A。 【考点】函数的图象。 【分析】如图,根据题意知,当点C在AB上运动时,DE是一组平行线段,线段DE从左向右运动先变长,当线段DE过圆心时为最长,然后变短,有最大值,开口向下。观察四个选项,满足条件的是选项A。故选A。 二、填空题 1. (2012江苏苏州3分)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s 的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:) 与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了 ▲ 秒 (结果保留根号). 【答案】4+。 【考点】动点问题的函数图象,矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值,勾股定理。 【分析】由图②可知,t在2到4秒时,△PAD的面积不发生变化, ∴在AB上运动的时间是2秒,在BC上运动的时间是4-2=2秒。 ∵动点P的运动速度是1cm/s,∴AB=2,BC=2。 过点B作BE⊥AD于点E,过点C作CF⊥AD于点F, 则四边形BCFE是矩形。∴BE=CF,BC=EF=2。 ∵∠A=60°, ∴,。 ∵由图②可△ABD的面积为, ∴,即, 解得AD=6。 ∴DF=AD-AE-EF=6-1-2=3。 在Rt△CDF中,, ∴动点P运动的总路程为AB+BC+CD=2+2+=4+(cm)。 ∵动点P的运动速度是1cm/s, ∴点P从开始移动到停止移动一共用了(4+)÷1=4+s。 2. (2012湖北黄石3分)如图所示,已知A点从点(1,0)出发,以每秒1个单位长的速度沿着x轴 的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=600, 又以P(0,4)为圆心,PC为半径的圆恰好与OA所在直线相切,则t= ▲ . 【答案】。 【考点】切线的性质,坐标与图形性质,菱形的性质,锐角三角函数定义,特殊角的三角函数值。 【分析】∵已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动, ∴经过t秒后,∴OA=1+t。, ∵四边形OABC是菱形,∴OC=1+t。, 当⊙P与OA,即与x轴相切时,如图所示,则切点为O,此时PC=OP。 过点P作PE⊥OC,垂足为点E。 ∴OE=CE=OC,即OE=(1+t)。 在Rt△OPE中,OP=4,∠OPE=900-∠AOC=30°, ∴OE=OP•cos30°=,即。 ∴。 ∴当PC为半径的圆恰好与OA所在直线相切时,。 3. (2012湖北荆门3分)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②cos∠ABE=;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是 ▲ (填序号). 【答案】①③④。 【考点】动点问题的函数图象,矩形的性质,勾股定理,锐角三角函数定义,相似三角形的判定和性质。 【分析】根据图(2)可知,当点P到达点E时点Q到达点C, ∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5。∴AD=BE=5。故结论①正确。 又∵从M到N的变化是2,∴ED=2。∴AE=AD﹣ED=5﹣2=3。 在Rt△ABE中,, ∴。故结论②错误。 过点P作PF⊥BC于点F, ∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=。 ∴PF=PBsin∠PBF=t。 ∴当0<t≤5时,。故结论③正确。 当秒时,点P在CD上, 此时,PD=-BE-ED=,PQ=CD-PD=4-。 ∵,∴。 又∵∠A=∠Q=90°,∴△ABE∽△QBP。故结论④正确。 综上所述,正确的有①③④。 3. (2012湖北荆州3分)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②cos∠ABE=;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是 ▲ (填序号). 【答案】①③④。 【考点】动点问题的函数图象,矩形的性质,勾股定理,锐角三角函数定义,相似三角形的判定和性质。 【分析】根据图(2)可知,当点P到达点E时点Q到达点C, ∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5。∴AD=BE=5。故结论①正确。 又∵从M到N的变化是2,∴ED=2。∴AE=AD﹣ED=5﹣2=3。 在Rt△ABE中,, ∴。故结论②错误。 过点P作PF⊥BC于点F, ∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=。 ∴PF=PBsin∠PBF=t。 ∴当0<t≤5时,。故结论③正确。 当秒时,点P在CD上, 此时,PD=-BE-ED=,PQ=CD-PD=4-。 ∵,∴。 又∵∠A=∠Q=90°,∴△ABE∽△QBP。故结论④正确。 综上所述,正确的有①③④。 4. (2012福建泉州4分)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(),(为自然数). (1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P()、P()都是过点P的△ABC的相似线(其中⊥BC,∥AC),此外还有 ▲ _条. (2)如图②,∠C=90°,∠B=30°,当 ▲ 时,P()截得的三角形面积为△ABC面积的. 【答案】(1)1;(2)或或。 【考点】相似三角形的性质,锐角三角函数定义,特殊角的三角函数值。 【分析】(1)如图, “相似线”还有一条,即与BC平行的直线。 (2)如图, “相似线”有三条:,,。 ∵P()截得的三角形面积为△ABC面积的, ∴△PBD,△APE,△FBP和△ABC的相似比是。 对于△PBD,有。 对于△APE,有,∴。 对于△FBP,若点F在BC上,有,即BA=2BF。 又在Rt△BPF中,∠B=30°,则。∴。 若点F在AC上,有,即BA=2FA。 又在Rt△APF中,∠A=60°,则。 ∴。∴。 综上所述,当或或时,P()截得的三角形面积为△ABC面积的。 5. (2012湖南张家界3分)已知线段AB=6,C.D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为 ▲ . 【答案】2。 【考点】动点问题。等边三角形的性质,平行的判定,平行四边形的判定和性质,三角形中位线定理。 【分析】如图,分别延长AE、BF交于点H,连接HD,过点G作MN∥AB分别交HA、HD于点M、N。 ∵△APE和△PBF是等边三角形, ∴∠A=∠FPB=60°,∠B=∠EPA=60°。 ∴AH∥PF,BH∥PE。∴四边形EPFH为平行四边形。 ∴EF与HP互相平分。 ∵点G为EF的中点, ∴点G也正好为PH中点,即在点P的运动过程中,点G始终为PH的中点。 ∴点G的运行轨迹为△HCD的中位线MN, ∵AB=6, AC=DB=1,∴CD=6﹣1﹣1=4。∴MN=2,即G的移动路径长为2。 6. (2012辽宁丹东3分)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正 方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有 ▲ 个. 【答案】5。 【考点】动点问题,正方形的性质,等腰三角形的判定,勾股定理,锐角三角函数定义,特殊角的三角函数值,线段中垂线的性质,等边三角形的判定。 【分析】如图,符合条件的Q点有5个。 当BP=BQ时,在AB,BC边上各有1点; 当BP=QP时,可由锐角三角函数求得点P到AB的距离为2,到CD的距离为4,到BC的距离为,到AD的距离为,故在BC,CD,DA边上各有1点; 当BQ=PQ时,BP的中垂线与AB,BC各交于1点,故在AB,BC边上各有1点。 又当Q在BC边上时,由于△BPQ是等边三角形,故3点重合。 因此,符合条件的Q点有5个。 7. (2012广西北海3分)如图,点A的坐标为(-1,0),点B在直线y=2x-4上运动,当线段A最 短时,点B的坐标是 ▲ 。 【答案】()。 【考点】直线上点的坐标与方程的关系,垂直线段最短的性质,相似三角形的判定和性质。 【分析】如图,由题意,根据垂直线段最短的性质,当线段AB最短时点B的位置B1,有AB1⊥BD。 过点B1作B1E垂直x轴于点E。 由点C、D在直线y=2x-4可得,C(2,0),D(0,-4) 设点B1(x ,2x-4),则E(x ,0)。 由A(-1,0),得AE= x+1,EB1=∣2x-4∣=4-2x,CO=2,DO=4。 易得△AB1E∽△DCO,∴,即。 解得。∴B1()。 ∴当线段AB最短时,点B的坐标是()。 三、解答题 1.(2012上海市14分)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E. (1)当BC=1时,求线段OD的长; (2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由; (3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域. 【答案】解:(1)∵点O是圆心,OD⊥BC,BC=1,∴BD=BC=。 又∵OB=2,∴。 (2)存在,DE是不变的。 如图,连接AB,则。 ∵D和E是中点,∴DE=。 (3)∵BD=x,∴。 ∵∠1=∠2,∠3=∠4,∠AOB=900。 ∴∠2+∠3=45°。 过D作DF⊥OE,垂足为点F。∴DF=OF=。 由△BOD∽△EDF,得,即 ,解得EF=x。 ∴OE=。 ∴。 【考点】垂径定理,勾股定理,等腰直角三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质。 【分析】(1)由OD⊥BC,根据垂径定理可得出BD=BC= ,在Rt△BOD中利用勾股定理即可求出OD的长。 (2)连接AB,由△AOB是等腰直角三角形可得出AB的长,再由D和E是中点,根据三角形中位线定理可得出DE= 。 (3)由BD=x,可知,由于∠1=∠2,∠3=∠4,所以∠2+∠3=45°,过D作DF⊥OE,则DF=OF=,EF=x,OE=,即可求得y关于x的函数关系式。 ∵,点C是弧AB上的一个动点(不与点A、B重合), ∴。 2. (2012福建南平14分)如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C. (1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明) 答:结论一: ;结论二: ;结论三: . (2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合), ①求CE的最大值; ②若△ADE是等腰三角形,求此时BD的长. (注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明) 【答案】解:(1)AB=AC;∠AED=∠ADC;△ADE∽△ACD。 (2)①∵∠B=∠C,∠B=45°,∴△ACB为等腰直角三角形。 ∴。 ∵∠1=∠C,∠DAE=∠CAD,∴△ADE∽△ACD。 ∴AD:AC=AE:AD,∴ 。 当AD最小时,AE最小,此时AD⊥BC,AD=BC=1。 ∴AE的最小值为 。∴CE的最大值= 。 ②当AD=AE时,∴∠1=∠AED=45°,∴∠DAE=90°。 ∴点D与B重合,不合题意舍去。 当EA=ED时,如图1,∴∠EAD=∠1=45°。 ∴AD平分∠BAC,∴AD垂直平分BC。∴BD=1。 当DA=DE时,如图2, ∵△ADE∽△ACD,∴DA:AC=DE:DC。 ∴DC=CA=。∴BD=BC-DC=2-。 综上所述,当△ADE是等腰三角形时,BD的长的长为1或2-。 【考点】相似三角形的判定和性质,勾股定理,等腰(直角)三角形的判定和性质。 【分析】(1)由∠B=∠C,根据等腰三角形的性质可得AB=AC;由∠1=∠C,∠AED=∠EDC+∠C得到∠AED=∠ADC;又由∠DAE=∠CAD,根据相似三角形的判定可得到△ADE∽△ACD。 (2)①由∠B=∠C,∠B=45°可得△ACB为等腰直角三角形,则,由∠1=∠C,∠DAE=∠CAD,根据相似三角形的判定可得△ADE∽△ACD,则有AD:AC=AE:AD,即,当AD⊥BC,AD最小,此时AE最小,从而由CE=AC-AE得到CE的最大值。 ②分当AD=AE,,EA=ED,DA=DE三种情况讨论即可。 3. (2012甘肃兰州12分)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上. (1)求抛物线对应的函数关系式; (2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由; (3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标; (4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由. 【答案】解:(1)∵抛物线y=x2+bx+c经过点B(0,4),∴c=4。 ∵顶点在直线x=上,∴,解得。 ∴所求函数关系式为。 (2)在Rt△ABO中,OA=3,OB=4,∴。 ∵四边形ABCD是菱形,∴BC=CD=DA=AB=5。 ∴C、D两点的坐标分别是(5,4)、(2,0), 当x=5时,; 当x=2时,。 ∴点C和点D都在所求抛物线上。 (3)设CD与对称轴交于点P,则P为所求的点, 设直线CD对应的函数关系式为y=kx+b, 则,解得,。∴直线CD对应的函数关系式为。 当x=时,。∴P()。 (4)∵MN∥BD,∴△OMN∽△OBD。 ∴,即,得。 设对称轴交x于点F,则。 ∵, , (0<t<4)。 ∵,,0<<4, ∴当时,S取最大值是。此时,点M的坐标为(0,)。 【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质,菱形的性质,相似三角形的判定和性质。 【分析】(1)根据抛物线y=x2+bx+c经过点B(0,4),以及顶点在直线x=上,得出b,c即可。 (2)根据菱形的性质得出C、D两点的坐标分别是(5,4)、(2,0),利用图象上点的性质得出x=5或2时,y的值即可。 (3)首先设直线CD对应的函数关系式为y=kx+b,求出解析式,当x=时,求出y即可。 (4)利用MN∥BD,得出△OMN∽△OBD,进而得出,得到,从而表示出△PMN的面积,利用二次函数最值求出即可。 4. (2012广东省9分)如图,抛物线与x轴交于A、B两点,与y轴交于点C,连接BC、AC. (1)求AB和OC的长; (2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围; (3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π). 【答案】解:(1)在中, 令x=0,得y=-9,∴C(0,﹣9); 令y=0,即,解得:x1=﹣3,x2=6,∴A(﹣3,0)、B(6,0)。 ∴AB=9,OC=9。 (2)∵ED∥BC,∴△AED∽△ABC,∴,即:。 ∴s=m2(0<m<9)。 (3)∵S△AEC=AE•OC=m,S△AED=s=m2, ∴S△EDC=S△AEC﹣S△AED =﹣m2+m=﹣(m﹣)2+。 ∴△CDE的最大面积为, 此时,AE=m=,BE=AB﹣AE=。 又, 过E作EF⊥BC于F,则Rt△BEF∽Rt△BCO,得:,即:。 ∴。 ∴以E点为圆心,与BC相切的圆的面积 S⊙E=π•EF2=。 【考点】二次函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,二次函数的最值,勾股定理,直线与圆相切的性质。 【分析】(1)已知抛物线的解析式,当x=0,可确定C点坐标;当y=0时,可确定A、B点的坐标,从而确定AB、OC的长。 (2)直线l∥BC,可得出△AED∽△ABC,它们的面积比等于相似比的平方,由此得到关于s、m的函数关系式;根据题目条件:点E与点A、B不重合,可确定m的取值范围。 (3)①首先用m列出△AEC的面积表达式,△AEC、△AED的面积差即为△CDE的面积,由此可得关于S△CDE关于m的函数关系式,根据函数的性质可得到S△CDE的最大面积以及此时m的值。 ②过E做BC的垂线EF,这个垂线段的长即为与BC相切的⊙E的半径,可根据相似三角形△BEF、△BCO得到的相关比例线段求得该半径的值,由此得解。 5. (2012贵州毕节16分)如图,直线l1经过点A(-1,0),直线l2经过点B(3,0), l1、l2均为与y轴交于点C(0,),抛物线经过A、B、C三点。 (1)求抛物线的函数表达式; (2)抛物线的对称轴依次与轴交于点D、与l2交于点E、与抛物线交于点F、与l1交于点G。求证:DE=EF=FG; (3)若l1⊥l2于y轴上的C点处,点P为抛物线上一动点,要使△PCG为等腰三角形,请写出符合条件的点P的坐标,并简述理由。 【答案】解:(1)∵抛物线经过A(-1,0),B(3,0),C(0,)三点, ∴ ,解得。 ∴抛物线的解析式为:. (2)证明:设直线l1的解析式为y=kx+b,由直线l1经过A(-1,0),C(0,)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 中考 数学 分类 解析 汇编 专题 问题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文