2019年中考数学专题复习第二十五讲对称(含详细参考答案).doc
《2019年中考数学专题复习第二十五讲对称(含详细参考答案).doc》由会员分享,可在线阅读,更多相关《2019年中考数学专题复习第二十五讲对称(含详细参考答案).doc(28页珍藏版)》请在咨信网上搜索。
2019年中考数学专题复习 第六章 图形与变换 第二十五讲 对称 【基础知识回顾】 1、轴对称:把一个图 形沿着某一条直线翻折过去,如果它能够与另一个图形 那么就说这两个图形成轴对称,这条直线叫 2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相 那么这个图形叫做轴对称图形 3、轴对称性质:⑴关于某条直线对称的两个图形 ⑵对应点连接被对称轴 【名师提醒:1、轴对称是指 个图形的位置关系,而轴对称图形是 指 个具有特殊形状的图形;2、对称轴是 而不是线段,轴对称图形的对称轴不一定只有一条】 【重点考点例析】 考点一:轴对称图形 例1(2018•邵阳)下列图形中,是轴对称图形的是( ) A. B. C. D. 【思路分析】根据轴对称图形的概念进行判断即可. 【解答】解:A、不是轴对称图形,故此选项错误; B、是轴对称图形,故此选项正确; C、不是轴对称图形,故此选项错误; D、不是轴对称图形,故此选项错误; 故选:B. 【点评】本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 考点二:关于x、y轴的对称点的坐标 例2 (2018•湘潭)如图,点A的坐标(-1,2),则点A关于y轴的对称点的坐标为( ) A.(1,2) B.(-1,-2) C.(1,-2) D.(2,-1) 【思路分析】直接利用关于y轴对称点的性质分析得出答案. 【解答】解:如图, 点A的坐标(-1,2),点A关于y轴的对称点的坐标为:(1,2). 故选:A. 【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律: (1)关于x轴对称的点,横坐标相同,纵坐标互为相反数; (2)关于y轴对称的点,纵坐标相同,横坐标互为相反数; (3)关于原点对称的点,横坐标与纵坐标都互为相反数. 考点三:最短路径问题 例3(2018•东营)在平面直角坐标系内有两点A、B,其坐标为A(-1,-1),B(2,7),点M为x轴上的一个动点,若要使MB-MA的值最大,则点M的坐标为 . 【思路分析】要使得MB-MA的值最大,只需取其中一点关于x轴的对称点,与另一点连成直线,然后求该直线x轴交点即为所求. 【解答】解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求. 设直线AB′解析式为:y=kx+b 把点A(-1,-1)B′(2,-7)代入 , 解得 , ∴直线AB′为:y=-2x-3, 当y=0时,x=- , ∴M坐标为(-,0) 故答案为:(-,0) 【点评】本题考查轴对称-最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答. 考点四:图形的折叠(翻折问题) 例4 (2018•常州)如图,把△ABC沿BC翻折得△DBC. (1)连接AD,则BC与AD的位置关系是 . (2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由. 【思路分析】(1)先由折叠知,AB=BD,∠ACB=∠DBC,进而判断出△AOB≌△DOB,最后用平角的定义即可得出结论; (2)由折叠得出∠ABC=∠DBC,∠ACB=∠DCB,再判断出∠ABC=∠ACB,进而得出∠ACB=∠DBC=∠ABC=∠DCB,最后用两边分别平行的四边形是平行四边形. 【解答】解:(1)如图, 连接AD交BC于O, 由折叠知,AB=BD,∠ACB=∠DBC, ∵BO=BO, ∴△ABO≌△DBO(SAS), ∴∠AOB=∠DOB,OA=OD ∵∠AOB+∠DOB=180°, ∴∠AOB=∠DOB=90°, ∴BC⊥AD, 故答案为:BC垂直平分AD; (2)添加的条件是AB=AC, 理由:由折叠知,∠ABC=∠DBC,∠ACB=∠DCB, ∵AB=AC, ∴∠ABC=∠ACB, ∴∠ACB=∠DBC=∠ABC=∠DCB, ∴AC∥BD,AB∥CD, ∴四边形ABDC是平行四边形. 【点评】此题主要考查了折叠的性质,平行四边形的判定,等腰三角形的性质,全等三角形的判定和性质,判断出△ABO≌△DBO(SAS)是解本题的关键. 备考真题过关 一、选择题 1.(2018•淄博)下列图形中,不是轴对称图形的是( ) A. B. C. D. 2. (2018•河北)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( ) A.l1 B.l2 C.l3 D.l4 3. (2018•苏州)下列四个图案中,不是轴对称图案的是( ) A. B. C. D. 4. (2018•资阳)下列图形具有两条对称轴的是( ) A.等边三角形 B.平行四边形 C.矩形 D.正方形 5. (2018•梧州)如图,在△ABC中,AB=AC,∠C=70°,△AB′C′与△ABC关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是( ) A.30° B.35° C.40° D.45° 6. (2018•沈阳)在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A的坐标是( ) A.(4,1) B.(-1,4) C.(-4,-1) D.(-1,-4) 7. (2018•贵港)若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是( ) A.-5 B.-3 C.3 D.1 8. (2018•枣庄)在平面直角坐标系中,将点A(-1,-2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( ) A.(-3,-2) B.(2,2) C.(-2,2) D.(2,-2) 9. (2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( ) A.3个 B.4个 C.5个 D.无数个 10. (2018•临安区)如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是( ) A.2 B.4 C.8 D.10 11. (2018•天津)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是( ) A.AB B.DE C.BD D.AF 12. (2018•新疆)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( ) A. B.1 C. D.2 13. (2018•吉林)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为( ) A.12 B.13 C.14 D.15 14. (2018•资阳)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( ) A.12厘米 B.16厘米 C.20厘米 D.28厘米 15. (2018•天津)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是( ) A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB 16. (2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是( ) A.1 B.1.5 C.2 D.2.5 二、填空题 17.(2018•南京)在平面直角坐标系中,点A的坐标是(-1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″ 18. (2018•长春)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为 . 19. (2018•邵阳)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是 . 20. (2018•杭州)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= . 21. (2018•常德)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= . 22. (2018•阜新)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为 . 23. (2018•淄博)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于 . 三、解答题 24.(2018•长春)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求: (1)所画的两个四边形均是轴对称图形. (2)所画的两个四边形不全等. 25. (2018•白银)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少? (2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率. 26. (2018•威海)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长. 27. (2018•荆州)如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证: (1)△AFG≌△AFP; (2)△APG为等边三角形. 27.【思路分析】(1)由折叠的性质得到M、N分别为AD、BC的中点,利用 28. (2018•广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE. (1)求证:△ADE≌△CED; (2)求证:△DEF是等腰三角形. 2019年中考数学专题复习 第六章 图形与变换 第二十五讲 对称参考答案 备考真题过关 一、选择题 1.【思路分析】观察四个选项图形,根据轴对称图形的概念即可得出结论. 【解答】解:根据轴对称图形的概念,可知:选项C中的图形不是轴对称图形. 故选:C. 【点评】本题考查了轴对称图形,牢记轴对称图形的概念是解题的关键. 2.【思路分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可. 【解答】解:该图形的对称轴是直线l3, 故选:C. 【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义. 3.【思路分析】根据轴对称的概念对各选项分析判断利用排除法求解. 【解答】解:A、是轴对称图形,故本选项错误; B、不是轴对称图形,故本选项正确; C、是轴对称图形,故本选项错误; D、是轴对称图形,故本选项错误. 故选:B. 【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 4.【思路分析】根据轴对称及对称轴的定义,结合所给图形即可作出判断. 【解答】解:A、等边三角形由3条对称轴,故本选项错误; B、平行四边形无对称轴,故本选项错误; C、矩形有2条对称轴,故本选项正确; D、正方形有4条对称轴,故本选项错误; 故选:C. 【点评】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等. 5.【思路分析】利用轴对称图形的性质得出△BAC≌△B′AC′,进而结合三角形内角和定理得出答案. 【解答】解:连接BB′, ∵△AB′C′与△ABC关于直线EF对称, ∴△BAC≌△B′AC′, ∵AB=AC,∠C=70°, ∴∠ABC=∠AC′B′=∠AB′C′=70°, ∴∠BAC=∠B′AC′=40°, ∵∠CAF=10°, ∴∠C′AF=10°, ∴∠BAB′=40°+10°+10°+40°=100°, ∴∠ABB′=∠AB′B=40°. 故选:C. 【点评】此题主要考查了轴对称图形的性质以及等腰三角形的性质,正确得出∠BAC度数是解题关键. 6.【思路分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案. 【解答】解:∵点B的坐标是(4,-1),点A与点B关于x轴对称, ∴点A的坐标是:(4,1). 故选:A. 【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键. 7.【思路分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得. 【解答】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称, ∴1+m=3、1-n=2, 解得:m=2、n=-1, 所以m+n=2-1=1, 故选:D. 【点评】本题主要考查关于x、y轴对称的点的坐标,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数. 8.【思路分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案. 【解答】解:点A(-1,-2)向右平移3个单位长度得到的B的坐标为(-1+3,-2),即(2,-2), 则点B关于x轴的对称点B′的坐标是(2,2), 故选:B. 【点评】此题主要考查了坐标与图形变化-平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律. 9.【思路分析】直接利用平移的性质结合轴对称图形的性质得出答案. 【解答】解:如图所示: 正方形ABCD可以向上、下、向右以及沿AC所在直线,沿BD所在直线平移, 所组成的两个正方形组成轴对称图形. 故选:C. 【点评】此题主要考查了利用轴对称设计图案以及平移的性质,正确掌握轴对称图形的性质是解题关键. 10.【思路分析】本题考查空间想象能力. 【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成, 由第一个图形可知:阴影部分的两部分可构成正方形的四分之一, 正方形的面积=4×4=16, ∴图中阴影部分的面积是16÷4=4. 故选:B. 【点评】解决本题的关键是得到阴影部分的组成与原正方形面积之间的关系. 11.【思路分析】连接CP,当点E,P,C在同一直线上时,AP+PE的最小值为CE长,依据△ABF≌△CDE,即可得到AP+EP最小值等于线段AF的长. 【解答】解:如图,连接CP, 由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP, ∴AP=CP, ∴AP+PE=CP+PE, ∴当点E,P,C在同一直线上时,AP+PE的最小值为CE长, 此时,由AB=CD,∠ABF=∠CDE,BF=DE,可得△ABF≌△CDE, ∴AF=CE, ∴AP+EP最小值等于线段AF的长, 故选:D. 【点评】本题考查的是轴对称,最短路线问题,根据题意作出A关于BD的对称点C是解答此题的关键. 12.【思路分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1. 【解答】解:如图, 作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长. ∵菱形ABCD关于AC对称,M是AB边上的中点, ∴M′是AD的中点, 又∵N是BC边上的中点, ∴AM′∥BN,AM′=BN, ∴四边形ABNM′是平行四边形, ∴M′N=AB=1, ∴MP+NP=M′N=1,即MP+NP的最小值为1, 故选:B. 【点评】本题考查的是轴对称-最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键. 13.【思路分析】由D为BC中点知BD=3,再由折叠性质得ND=NA,从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案. 【解答】解:∵D为BC的中点,且BC=6, ∴BD=BC=3, 由折叠性质知NA=ND, 则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12, 故选:A. 【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 14.【思路分析】利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长. 【解答】解:∵∠HEM=∠AEH,∠BEF=∠FEM, ∴∠HEF=∠HEM+∠FEM=×180°=90°, 同理可得:∠EHG=∠HGF=∠EFG=90°, ∴四边形EFGH为矩形, AD=AH+HD=HM+MF=HF, , ∴AD=20厘米. 故选:C. 【点评】此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键. 15.【思路分析】先根据图形翻折变换的性质得出BE=BC,根据线段的和差,可得AE+BE=AB,根据等量代换,可得答案. 【解答】解:∵△BDE由△BDC翻折而成, ∴BE=BC. ∵AE+BE=AB, ∴AE+CB=AB, 故D正确, 故选:D. 【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键. 16.【思路分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长. 【解答】解:如图,连接AE, ∵AB=AD=AF,∠D=∠AFE=90°, 在Rt△AFE和Rt△ADE中, ∵ , ∴Rt△AFE≌Rt△ADE, ∴EF=DE, 设DE=FE=x,则EC=6-x. ∵G为BC中点,BC=6, ∴CG=3, 在Rt△ECG中,根据勾股定理,得:(6-x)2+9=(x+3)2, 解得x=2. 则DE=2. 故选:C. 【点评】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理. 二、填空题 17.【思路分析】直接利用关于y轴对称点的性质得出点A'坐标,再利用平移的性质得出答案. 【解答】解:∵点A的坐标是(-1,2),作点A关于y轴的对称点,得到点A', ∴A′(1,2), ∵将点A'向下平移4个单位,得到点A″, ∴点A″的坐标是:(1,-2). 故答案为:1,-2. 【点评】此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键. 18.【思路分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可. 【解答】解:当AE⊥BC时,四边形AEFD的周长最小, ∵AE⊥BC,AB=2,∠B=60°. ∴AE=3,BE=, ∵△ABE沿BC方向平移到△DCF的位置, ∴EF=BC=AD=7, ∴四边形AEFD周长的最小值为:14+6=20, 故答案为:20 【点评】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析. 19.【思路分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解. 【解答】解:∵AB=AC,∠A=36°, ∴ , ∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处, ∴AE=CE,∠A=∠ECA=36°, ∴∠CEB=72°, ∴BC=CE=AE=, 故答案为:. 【点评】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键. 20.【思路分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE-HE=x-1,然后根据勾股定理得到x2+(x-1)2=(x+2)2,再解方程求出x即可. 【解答】解:设AD=x,则AB=x+2, ∵把△ADE翻折,点A落在DC边上的点F处, ∴DF=AD,EA=EF,∠DFE=∠A=90°, ∴四边形AEFD为正方形, ∴AE=AD=x, ∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上, ∴DH=DC=x+2, ∵HE=1, ∴AH=AE-HE=x-1, 在Rt△ADH中,∵AD2+AH2=DH2, ∴x2+(x-1)2=(x+2)2, 整理得x2-6x-3=0,解得x1=3+2,x2=3-2(舍去), 即AD的长为3+2. 故答案为3+2. 【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理. 21.【思路分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH-∠EGB=∠EBC-∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案. 【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°, ∴∠EBG=∠EGB. ∴∠EGH-∠EGB=∠EBC-∠EBG,即:∠GBC=∠BGH. 又∵AD∥BC, ∴∠AGB=∠GBC. ∴∠AGB=∠BGH. ∵∠DGH=30°, ∴∠AGH=150°, ∴∠AGB=∠AGH=75°, 故答案为:75°. 【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 22.【思路分析】由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8-x,且A1B=4,在Rt△A1BE中,利用勾股定理可列方程,则可求得答案. 【解答】解: 由折叠的性质可得AE=A1E, ∵△ABC为等腰直角三角形,BC=8, ∴AB=8, ∵A1为BC的中点, ∴A1B=4, 设AE=A1E=x,则BE=8-x, 在Rt△A1BE中,由勾股定理可得42+(8-x)2=x2,解得x=5, 故答案为:5. 【点评】本题主要考查折叠的性质,利用折叠的性质得到AE=A1E是解题的关键,注意勾股定理的应用. 23.【思路分析】要计算周长首先需要证明E、C、D共线,DE可求,问题得解. 【解答】解:∵四边形ABCD是平行四边形 ∴AD∥BC,CD=AB=2 由折叠,∠DAC=∠EAC ∵∠DAC=∠ACB ∴∠ACB=∠EAC ∴OA=OC ∵AE过BC的中点O ∴AO=BC ∴∠BAC=90° ∴∠ACE=90° 由折叠,∠ACD=90° ∴E、C、D共线,则DE=4 ∴△ADE的周长为:3+3+2+2=10 故答案为:10 【点评】本题考查了平行四边形的性质、轴对称图形性质和三点共线的证明.解题时注意不能忽略E、C、D三点共线. 三、解答题 24.【思路分析】利用轴对称图形性质,以及全等四边形的定义判断即可. 【解答】解:如图所示: 【点评】此题考查了作图-轴对称变换,以及全等三角形的判定,熟练掌握各自的性质是解本题的关键. 25.【思路分析】(1)直接利用概率公式计算可得; (2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得. 【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份, ∴米粒落在阴影部分的概率是 ; (2)列表如下: A B C D E F A (B,A) (C,A) (D,A) (E,A) (F,A) B (A,B) (C,B) (D,B) (E,B) (F,B) C (A,C) (B,C) (D,C) (E,C) (F,C) D (A,D) (B,D) (C,D) (E,D) (F,D) E (A,E) (B,E) (C,E) (D,E) (F,E) F (A,F) (B,F) (C,F) (D,F) (E,F) 由表可知,共有30种等可能结果,其中是轴对称图形的有10种, 故新图案是轴对称图形的概率为 . 【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 26.【思路分析】由题意知∠3=180°-2∠1=45°、∠4=180°-2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得. 【解答】解:由题意,得:∠3=180°-2∠1=45°,∠4=180°-2∠2=30°,BE=KE、KF=FC, 如图,过点K作KM⊥BC于点M, 设KM=x,则EM=x、MF=x, ∴x+x=+1, 解得:x=1, ∴EK=、KF=2, ∴BC=BE+EF+FC=EK+EF+KF=3++, ∴BC的长为3++. 【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 27.【思路分析】(1)由折叠的性质得到M、N分别为AD、BC的中点,利用平行线分线段成比例得到F为PG的中点,再由折叠的性质得到AF垂直于PG,利用SAS即可得证; (2)由(1)的全等三角形,得到对应边相等,利用三线合一得到∠2=∠3,由折叠的性质及等量代换得到∠PAG为60°,根据AP=AG且有一个角为60°即可得证. 【解答】证明:(1)由折叠可得:M、N分别为AD、BC的中点, ∵DC∥MN∥AB, ∴F为PG的中点,即PF=GF, 由折叠可得:∠PFA=∠D=90°,∠1=∠2, 在△AFP和△AFG中,, ∴△AFP≌△AFG(SAS); (2)∵△AFP≌△AFG, ∴AP=AG, ∵AF⊥PG, ∴∠2=∠3, ∵∠1=∠2, ∴∠1=∠2=∠3=30°, ∴∠2+∠3=60°,即∠PAG=60°, ∴△APG为等边三角形. 【点评】此题考查了翻折变换(折叠问题),全等三角形的判定与性质,等边三角形的判定,以及矩形的性质,熟练掌握折叠的性质是解本题的关键. 28.【思路分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS); (2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形. 【解答】证明:(1)∵四边形ABCD是矩形, ∴AD=BC,AB=CD. 由折叠的性质可得:BC=CE,AB=AE, ∴AD=CE,AE=CD. 在△ADE和△CED中, , ∴△ADE≌△CED(SSS). (2)由(1)得△ADE≌△CED, ∴∠DEA=∠EDC,即∠DEF=∠EDF, ∴EF=DF, ∴△DEF是等腰三角形. 【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年中 数学 专题 复习 第二 十五 对称 详细 参考答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文