2018版高中数学人教版A版必修五学案:§1.1.2余弦定理(一)正式版.doc
《2018版高中数学人教版A版必修五学案:§1.1.2余弦定理(一)正式版.doc》由会员分享,可在线阅读,更多相关《2018版高中数学人教版A版必修五学案:§1.1.2余弦定理(一)正式版.doc(8页珍藏版)》请在咨信网上搜索。
1.1.2 余弦定理(一) [学习目标] 1.掌握余弦定理的内容与推论及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题. 知识点一 余弦定理及其证明 1.余弦定理的表示及其推论 文字语言 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍 符号语言 a2=b2+c2-2bccos__A, b2=a2+c2-2accos__B, c2=a2+b2-2abcos__C 推论 cos A=, cos B=, cos C= 2.余弦定理的证明 (1)课本上采用的证明方法: 如图,设a=,b=,c=,则c=b-a, ∴|c|2=c·c=(b-a)2=a2-2a·b+b2=a2-2abcos__C+b2, ∴c2=a2+b2-2abcos C. (2)利用坐标法证明 如图,建立平面直角坐标系,则A(0,0),B(ccos__A,csin__A),C(b,0)(写出三点的坐标). ∴a=BC= =, ∴a2=b2+c2-2bccos A. 思考1 在△ABC中,若a2=b2+bc+c2,则A=________. 答案 解析 由题意知,cos A==-=-, 又A∈(0,π),∴A=. 思考2 勾股定理和余弦定理的联系与区别? 答案 二者都反映了三角形三边之间的平方关系,其中余弦定理反映了任一三角形中三边平方间的关系,勾股定理反映了直角三角形中三边平方间的关系,是余弦定理的特例. 知识点二 用余弦定理解三角形的问题 利用余弦定理可以解决以下两类问题: (1)已知两边及其夹角解三角形; (2)已知三边解三角形. 思考 已知三角形的两边及一边的对角解三角形,有几种方法? 答案 不妨设已知a,b,A, 方法一 由正弦定理=可求得sin B,进而得B,C,最后得边c. 方法二 由余弦定理a2=b2+c2-2bccos A得边c,而后由余弦或正弦定理求得B,C. 题型一 已知两边及其夹角解三角形 例1 在△ABC中,已知a=2,b=2,C=15°,求角A,B和边c的值(cos 15°=,sin 15°=). 解 由余弦定理知c2=a2+b2-2abcos C =4+8-2×2×2×=8-4, ∴c===-. 由正弦定理得sin A====, ∵b>a,∴B>A,∴A=30°,∴B=180°-A-C=135°, ∴c=-,A=30°,B=135°. 反思与感悟 已知三角形的两边及其夹角解三角形的方法 (1)先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理(已知两边和一边的对角)求解. (2)用正弦定理求解时,需对角的取值根据“大边对大角”进行取舍,而用余弦定理就不存在这些问题(因为在(0,π)上,余弦值对应的角是唯一的),故用余弦定理求解较好. 跟踪训练1 在△ABC中,角A,B,C的对边分别为a,b,c,若a=3,b=2,cos(A+B)=,则c等于( ) A.4 B. C.3 D. 答案 D 解析 由三角形内角和定理可知cos C=-cos(A+B)=-,又由余弦定理得c2=a2+b2-2abcos C=9+4-2×3×2×(-)=17,所以c=. 题型二 已知三边(或三边的关系)解三角形 例2 在△ABC中,已知a=2,b=6+2,c=4,求A,B,C. 解 根据余弦定理,cos A= ==. ∵A∈(0,π),∴A=, cos C===, ∵C∈(0,π),∴C=. ∴B=π-A-C=π--=π, ∴A=,B=π,C=. 反思与感悟 已知三边(或三边的关系)解三角形的方法 (1)利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为0,角为直角;值为负,角为钝角. (2)方法一:两次运用余弦定理的推论求出两个内角的余弦值,确定两个角,并确定第三个角. 方法二:由余弦定理的推论求一个内角的余弦值,确定角的大小;由正弦定理求第二个角的正弦值,结合“大边对大角、大角对大边”法则确定角的大小,最后由三角形内角和为180°确定第三个角的大小. (3)若已知三角形三边的比例关系,常根据比例的性质引入k,从而转化为已知三边求解. 跟踪训练2 将例2中的条件改为“a∶b∶c=2∶(6+2)∶4”,求A,B,C. 解 ∵a∶b∶c=2∶(6+2)∶4, 即==, 不妨设=k,则a=2k,b=(6+2)k,c=4k, 下同例题解法. 题型三 已知两边及其中一边的对角解三角形 例3 在△ABC中,已知角A,B,C所对的边分别为a,b,c,若a=2,b=,A=45°,求边c. 解 方法一 在△ABC中,根据余弦定理可得 a2=b2+c2-2bccos A,即c2-2c-6=0, 所以c=±3. 又c>0,所以c=+3. 方法二 在△ABC中,由正弦定理得 sin B===, 因为b<a,所以B<A, 又B∈(0°,180°),所以B=30°, 所以C=180°-A-B=105°, 所以sin C=sin 105°=sin(45°+60°)=sin 45°cos 60°+cos 45°sin 60°=, 故c===+3. 反思与感悟 已知三角形的两边及其中一边的对角解三角形的方法 可根据余弦定理列一元二次方程求出第三边(注意边的取舍),再利用正弦定理求其他的两个角;也可以由正弦定理求出第二个角(注意角的取舍),再利用三角形内角和定理求出第三个角,最后利用正弦定理求出第三边. 跟踪训练3 已知在△ABC中,b=,c=3,B=30°,解此三角形. 解 方法一 由余弦定理b2=a2+c2-2accos B得 ()2=a2+32-2×a×3×cos 30°, ∴a2-3a+6=0,∴a=或a=2. 当a=时,a=b,∴A=30°,∴C=120°; 当a=2时,由正弦定理得 sin A===1, 又∵A∈(0°,180°),∴A=90°,C=60°. ∴C=60°,A=90°,a=2或C=120°,A=30°,a=. 方法二 由b<c,B=30°,b>csin 30°知本题有两解. 由正弦定理,得sin C===, ∴C=60°或120°. 当C=60°时,A=90°,由勾股定理得a==2; 当C=120°时,A=30°=B,∴a=. ∴C=60°,A=90°,a=2或C=120°,A=30°,a=. 1.在△ABC中,符合余弦定理的是( ) A.c2=a2+b2-2abcos C B.c2=a2-b2-2bccos A C.b2=a2-c2-2bccos A D.cos C= 答案 A 解析 由余弦定理及其推论知只有A正确. 2.△ABC的内角A,B,C的对边分别为a,b,c.已知a=,c=2,cos A=,则b=( ) A. B. C.2 D.3 答案 D 解析 由余弦定理,得5=b2+22-2×b×2×,解得b=3,故选D. 3.在△ABC中,角A,B,C所对的边分别为a,b,c,若C=120°,c=a,则( ) A.a>b B.a<b C.a=b D.a与b的大小关系不确定 答案 A 解析 cos 120°===-, ∴b=a<a. 4.在△ABC中,若a2+b2-c2=ab,则角C的大小为________. 答案 解析 cos C===, 又B∈(0,π),∴B=. 5.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=,c=,则B=________. 答案 π 解析 cos B===-, 又B∈(0,π),∴B=π. 1.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例. (1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角. 2.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角或已知三边能直接利用余弦定理解三角形. (2)若已知两边和一边的对角,既可以用正弦定理又可以用余弦定理解三角形,但用正弦定理时要注意不要漏解或多解. 学习不是一朝一夕的事情,需要平时积累,需要平时的勤学苦练。有个故事:古希腊大哲学家苏格拉底在开学第一天对他的学生们说:“今天你们只学一件最简单也是最容易的事儿。每人把胳膊尽量往前甩,然后再尽量往后甩。”说着,苏格拉底示范做了一遍,“从今天开始,每天做300下,大家能做到吗?”学生们都笑了,这么简单的事,有什么做不到的?过了一个月,苏格拉底问学生:每天甩手300下,哪个同学坚持了,有90%的学生骄傲的举起了手,又过了一个月,苏格拉底又问,这回,坚持下来的学生只剩下了80%。一年过后,苏格拉底再一次问大家:“请告诉我,最简单的甩手运动。还有哪几个同学坚持了?”这时,整个教室里,只有一个人举起了手,这个学生就是后来成为古希腊另一位大哲学家的柏拉图。同学们,柏拉图之所以能成为大哲学家,其中一个重要原因,就是,柏拉图有一种持之以恒的优秀品质。要想成就一番事业,必须有持之以恒的精神,大家都熟悉愚公移山的故事,愚公之所以能够感动天帝,移走太行、王屋二山。正是因为他具有锲而不舍的精神。戎马一生,他前十次革命均告失败,但他百折不挠,终于在第十一次革命的时候,推翻了清王朝的统治,建立了中华民国。这些故事,情节不同,但意义都是一样的,它告诉无们,做事要有恒心。旬子讲:“锲而不舍,朽木不折;锲而舍之,金石可镂。”这句话充分说明了一个人如果有恒心,一些困难的事情便可以做到,没有恒心,再简单的事也做不成。学习是一条慢长而艰苦的道路,不能靠一时激情,也不是熬几天几夜就能学好的,必须养成平时努力学习的习惯。所以我说:学习贵在坚持! 当下市面上关于教授学习方法的书籍不少,其所载内容也的确很有道理,然而当读者实际应用时,很多看似实用的方法用来效果却并不明显,之后的结果无非是两种:要么认为自己没有掌握其精髓要领,要么抱怨那本书的华而不实,但最终肯定还是会回归到当初的原点。这本《学会学习》在一开始并没有急于兜售自己的方法,而是通过测试让读者真正了解自己,从而找到适合自己思维方式的学习方法,书的第一部分就是左脑还是右脑思维测试和视觉、听觉和动觉学习模式测试,经过有效分类后,针对不同读者对不同思考和接收接受学习的特点,有针对性的分别给出建议,从而不断强化自己的优势。在其后书中的所有介绍具体学习方法章节的最开始,都是按照不同学习模式给出各种学习方法不同的建议,这是此书区别于其他学习方法类书籍的最大特点,这种“因材施教”的方式能让读者有种豁然开朗的感觉,除了能够得到最适合自己的有效的学习方法也能更深入的认识客观的自己,不论对学习还是生活都有帮助。除了“针对性”强外,本书第二大特点就是“全面”,全书都是由一篇篇短文、图表集成,更像是一本博文或者PPT课件合集,每个学习方法的题目清晰明了十分便于查找,但也因此有些章节内容安排的比较混乱,所幸每一章节关联性并不太强,每个章节都适合独立检索来阅读学习。其内容从“时间规划”、“笔记”“阅读”直到“考试”几乎涉及了所有学习中的常遇问题,文中文字精炼没有过分的渲染,完全是纯纯的“干货”,可以设身处地的想象:当自己面对学海之中手足无措之时,长篇大论的方法肯定会无心查看,明了的编排,让人从目录中就能一目了然的找到自己想要的,一篇篇短文尽可能在最少的时间让读者得到最有用的信息,是一部值得学习的人们不断自我提高的有力武器。曾经看到一个有意思的心理测试:用“正确的方法”、“错误的方法”和“积极的行为”、“消极的行为”,来自由搭配,看如何搭配出最好和最坏的结果,“正确方法”配合“积极的行为”无疑是最好的结果,然而我们会很“惯性”想当然的认为,“错误的方法”和“消极的行为”搭配是最坏的结果,其实“错误的方法”加上“积极的行为”才是最坏的结果,这会让人在错误的路上越走越远,学习也是同理,一味钻牛角尖般的生搬硬套不适合自己的方法不论多努力都只会离成功越来越远,而好的学习方法加上积极的学习态度无疑会让你如虎添翼。这是每个人都需要的,起码在学生的时候如果遇到,或者人生会少一些遗憾,我只恨我遇见的晚了点,可是现在已是终身学习的年代,错过了最恰当的时候,但只要有心又怎会嫌晚呢?本书归类为学习方法-青年读物,是本工具书,学习手册,但不能阻止她成为经典。这本书的副标题为“增加学习技能与脑力”,正是本书的宗旨,本书系统化地阐述了学习技能提升的各个方面,可谓事无巨细的令人发指啊。整体来讲主要包括7个方面,分别是学习模式,时间管理和学习技巧规划,笔记记录技巧,阅读技巧,记忆,应试技巧,拾遗。全书的结构采取的是总分的形式,前三个方面是总的部分,算是增加学习技能的准备,从认识自己的学习模式开始,然后采取任何事都需要的时间管理技巧,再总体地讲一下学习技巧规划的事项。然后底下是分的部分,将学习的包含的各个方面的技巧进行分开阐述,分别有笔记记录,阅读,记忆,应试以及最后的拾遗。系统地讲述了学习的几乎所有方面。让读到她的人如果实践的话不仅能在学习上得到提高,在脑力上或者说理解力上肯定会受益匪浅。在此,说句题外话,我一直觉得日本人写书在细节上做的是无与伦比的,但是这本书让我对这个看法有了一定的动摇,因为她里面的讲述部分让我觉得美国是个应试教育的国家吗,简直比我们中国还要应试。那个考试应对细节的部分放在中国,一点也没有违和感的,好吗?所以他们能出现这样的情况,从没到过日本的人能够写出描写日本人的书,然后让日本人都觉得是经典的,没有在企业里做过实务管理的德鲁克能成为管理上的大师,其理念影响了全世界……不得不说,美国的教育真不是盖的。细节上,我印象比较深的是,作者开篇开始传授如何应该认识自己的学习模式,运用了一些测试题目,然后根据结果找出与自己最近似的学习模式,她把学习模式分为几种情况,分别有左脑型,右脑型,还有另外的分法,为视觉的,听觉的,动作的。我看了一下,确实有跟自己近的类型,我就是视觉的,对号入座后就可以比较直接的去扬长避短了。然后,作者说了,做任何事情,时间管理技巧都是不可缺少的,她不仅教导的是学习的技能,还有很多其他的道理,对我们人生都是有益的,我相信,如果我们的孩子从小就学习这些,将会受用终生。还有,作者提到了学习技巧规划里的家庭档案系统,将我们现在工作中的管理引进了学习中,这是一个非常好的学习习惯,如果孩子持续的做,严格地做,获得的收益将无法估量,因为,这在我们现在工作中都必须要用的管理信息的技能,实在是太可贵了,孩子将这种技能与阅读结合起来,保管好自己思维历程,可以获得持续的提高,直到最后展翅翱翔,他最可贵的是,可以系统地提升自己,从而达到书中简介里提到的那样,碰到不会的领域的时候,可以很快的用这些方法,工具建立起模型,系统,游刃有余地攻克自己之前没接触的领域,提升自己的理解力,我想这正是我们学习的比较重要的一个目的吧。最后,我影响比较深的就是作者提供的那些小工具了,包括笔记的表格,辅助记忆的表格,帮助整理文档的夹子,应对考试的技巧,缓解紧张的方法……我觉得全书对于如何增加学习技能和脑力的讲述是有道理的,我也相信通过实践作者在书上所提到的方法,定能在学习中得到提高。但是,那也不是一朝一夕的事情,就像我们大家都知道的那个故事,在美国得到诺贝尔奖的科学家说,自己得奖最大的原因都是在幼儿园里学习的最基本的道理,就是说要和郭靖一样,不要贪多吃不烂,认定他就要好好地坚持去做,不要停。我自己喜欢的是家庭归档系统,虽然不是学习过程中的技能,只属于学习准备的东西,但是如果坚持井井有条的那样整理自己的学习思维,对自己的收益将难以估量。稍显不足的地方是,第一,本书的语言太过精练,感觉就像没有主观感情一样,要命的是有很多词语或者概念读的时候甚至不知道什么意思,书中也没做讲解,本来就看的比较费力,现在好了,作者也不等你,直接把你撂那。第二,作者很多地方就像立一个提纲一样,直接让你自己去参考多少多少页,这个太不习惯了。第三,作者在书中提到各种学习的类型,但是并没有就这种类型合适他们的学习方法做开展或者介绍,比如,将学习分为好几种类型的那个部分,有内省的,有外联的之类,然而并没有对各种类型进行针对性的指导。从而她的有些观点就不太适用,像成立学习小组的,这个对于内向的人,在我国这样的学习环境中是比较的困难,但作者没有就如何做提出建议,只是告诉读者这么做,会显得不够全面或者落空。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 高中 学人 必修 五学案 1.1 余弦 定理 正式版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文