电梯毕业设计外文翻译样本.doc
《电梯毕业设计外文翻译样本.doc》由会员分享,可在线阅读,更多相关《电梯毕业设计外文翻译样本.doc(40页珍藏版)》请在咨信网上搜索。
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除。 ELEVATOR SAFETY: GIVE THE MINER A BRAKE ABSTRACT Over a five-year period, there were at least 18 documented cases of ascending elevators striking the overhead. In some cases, theaccidents resulted in serious injuries or fatalities. These accidents occurred on counter weighted elevators as a result of electrical,mechanical, and structural failures. Elevator cars are fitted withsafeties that grip the guide rails and stop a falling car; however,these devices do not provide protection in the upward direction. Rules and regulations applying to elevator safety have come under review in response to these accidents. Some governing authoritieshave already revised their regulations to require ascending caroverspeed protection. This paper will discuss basic elevator design, hazards, regulations, and emergency braking systems designed toprovide ascending car overspeed protection. In addition, a case-studyreport on a pneumatic rope brake system installed and tested on a mineelevator will be discussed. I NTRODUCT I ON Elevators incorporate several safety features to prevent the carfrom crashing into the bottom of the shaft. Safeties installed on thecar can prevent this type of accident from occurring when the machine brake fails or the wire ropes suspending the car break. However, the inherent design of the safeties render them inoperative in the ascending direction. In the upward direction, the machine brake is required to stop the cage Irvhen an emergency condition occurs. Under normal operation, the machine brake serves only as a parking braked to hold the cage at rest. However, when an emergency condition is detected, modern elevator control system designs rely solely on the machine brake to stop the car. In the United States mining industry, the accident history has proven that this is not the best control strategy [2], [3]. These accidents occurred when the retarding effort of the drive motor was defeated when the mechanical brakes were inoperative. This allowed the counterweight to fall to the bottom of the shaft, causing the car to overspeed and strike the headframe. The high-speed elevator crashes into the overhead structure caused extensive mechanical damage and potentially fatal injuries. ELEVATOR DES I GN A basic understanding of elevator operation is required in order to assess the safety hazards present and determine the accident prevent methods available. Figure 1 shows a complete view of a mine elevator. Fig.1 Mico Elevator SUSPENSION riCPCS In a typical elevator, the ear is raised and loered by six toeight motor–driven wire ropes that are attached to the top of the car at one end, travel around a pair of sheaves, and are again attachedto a counterweight at the other end. The counterweight adds accelerating force when the elevator car is ascending and provides a retarding effort when the car is descending so that less motor horsepower is required. The counterweight is a collection of metal weights that is equal to the weight of the car containing about 45% of its rated load. A set of chains are looped from the bottom of the counterweight to the underside of the car to help maintain balance by offsetting the weight of the suspension ropes Guide rails that run the length of the shaft keep the car andcounterweight from swaying or twisting during their travel. Rollersare attached to the car and the counterweight to provide smooth travel along the guide rails. The traction to raise and lower the car comes from the friction of the wire ropes against the grooved sheaves. The main sheave is driven by an electric motor. Motor-generator (M-G) sets typically pro-vide to dc power for the drive motor. Newer systems use a static drive control. The elevator controls vary the motor' s speed based on a set of feedback signals that indicate the car' s position in the shaftway. As the car approaches its destination, a switch near the landing signals the controls to stop the car at floor level. Additional shaftway limit switches are installed to monitor overtravel conditions. The worst fear of 'litany passengers is that the elevator will go out of control and fall through space until it smashes into the bottom of the shaft. There are several safety features in modern elevators to prevent this from occurring. The first is the high-strength wire ropes themselves. Each 0. 625-in-diameter extra-high-strength wire rope can support 32, 000 lb, or about twice the average weight of a mine elevator filled with 20 passengers. For safety' s sake and to reduce wear, each car has six to eight of these cables. In addition, elevators have buffers installed at the shaft bottom that can stop the car without killing its passengers if they are struck at the normal speed of the elevator As previously discussed, modern elevators have several speed control features. If they do not work, the controls will disconnect the motor and apply the machine brake. Finally, the elevator itself is equipped with safeties mounted underneath the car. If the car surpasses the rated speed by 15 to 25%, the governor will trip, and the safeties will grip the guide rails and stop the car. This was the invention that made elevator transportation acceptable for the general public. SAFETY HAZARDS A historical perspective of elevator development can account for today' s problems with elevator safety rules and regulations [4]. In the beginning of modern elevator history, it was realized that although there were several factors of safety in the suspension rope design, the quality of construction and periodic inspection could not be assured. Therefore, the elevator car was equipped with reliable stand by 'safeties" that would stop the car safely if the suspension ropes failed. In 1853, Elisha. Otis, a New York mechanic, designed and demonstrated an instantaneous safety capable of safely stopping a free– falling car. This addressed the hazard shown in figure 2. Later on, it was realized that passengers may be injured when the car overspeeds in the down direction with suspension ropes intact, as shown in figure 3. To prevent this hazard, an o-verspeed governor with gradually applied safeties was developed. It detected the over peeling condition and activated the safeties. Furthermore, it was noticed that frequent application of safeties caused mechanical stress on the elevator structure and safety system.Therefore, a governor overspeed switch was installed that would try to stop the car by machine brake before the safeties activated. The switch was a useful idea because it could also initiate stopping in the case of overspeeding in the up direction as well. The problem started in the 1920's when the American Elevator Safety Code was developed. The writers most likely looked at the technology that was available at that time and subsequently required it on all elevators covered by the Code. The writers were so concentrated on describing the design of the required devices that they forgot to acknowledge the hazards that the devices are guarding against and the elevator components that may fail and cause the hazards. They did not consider the fact that for 90% of the elevator trips, the elevator is partially loaded (i. e. less than 45% of rated load) [5]. Therefore, if a brake failure occurs, the elevator will overspeed and crash in the up direction as shown in figure 4 . Fig.4 Car overspeed UP Until recently, elevator safety systems have not differed significantly from the early 1900' s designs. The problem arises because rulernaking committees and regulatory authorities are reluctant to require new safeguards when the technology has not been fully developed. Conversely, the elevator manufacturing industry cannot justify the product development expense for a new safety device with little marketability. This problem will be addressed in the following sections RULES AND REGULATIONS Several rulemaking committees and government safety authorities have addressed the deficiencies in the existing elevator regulations and have proposed revisions to the elevator safety codes. The report from the American Society of Mechanical Engineers A17 Mechanical Design Committee on "Cars ascending into the building overhead, "-dated September 1987, contained the types of failures that could result in elevators accelerating into overhead structure and an analysis of the possible solutions. In addition, a proposal to the A17. 1 Committee for a new code Rule 205. 6 was introduced as follows: Rule 205. 6 ("Prevention of overspeeding car from striking the overhead structure') : All traction elevators shall be provided with a means to prevent an ascending car from striking the overhead structure. This rneans shall conform to the following requirements: 1.Prior to the time when the counterweight strikes its buffer, it shall reduce the speed of the car to the speed for which the counterweight buffer is designed. 2.It shall not develop an average retardation of the car in excess of 32.2 ft /s2 (9.81 m/s2) during the stopping phase. 3.1t shall be a mechanical means independent of the driving machine brake. 4.1t shall prevent overspeeding of the elevator system through the control of one or more of the following a.counterweight b.car c.suspension or compensating rope system. This proposed rule is currently under committee review, and consideration has been given to requiring protection to prevent the car from leaving the landing with the doors opened or unlocked. Pennsylvania Bureau of Deep Mine Safety An ascending elevator car accident occurred at a western Pennsylvania coal mine on February 4, 1987 and caused extensive structural damage and disabled the elevator for two months. Following this accident, the Pennsylvania. Bureau of Deep Mine Safety established an advisory committee to determine these devices that are available to provide ascending car overspeed protection for new and existing mine elevator installations. The following four protective methods were determined to be feasible based on engineering principles or extensive mine testing. 1.Weight balancing (counterweight equals the empty car weight) 2.Counterweight safeties 3.Dynamic braking 4.Rope brake The Pennsylvania Bureau of Deep Mine Safety has approved these four methods and has made ascending car overspeed protection mandatory on all existing counterweighted mine elevators. Dynamic Braking A second solution used in the United States mining industry is the application of passive dynamic braking to the elevator drive motor [6]. As mentioned earlier, most elevators use direct current drive motors that can perform as generators when lowering an overhauling load. Dynamic braking simply connects a resistive load across the motor armature to dissipate the electrical energy generated by the falling counterweight. The dynamic braking control can he designed to function when the main power is interrupted. Dynamic braking does not stop the elevator but limits the runaway speed in either direction; therefore, the buffers can safely stop the conveyance. Rope Brake A pneumatic rope brake that grips the suspension ropes and stops the elevator during emergency conditions has been developed by Bode Aufzugel [7]. This rope brake has been used in the Netherlands since August 12, 1957. Case Study: Rope Brake Testing and Evaluatio The first pneumatic rope brake was installed in the United States at a western Pennsylvania coal mine on September 8, 1989. The largest capacity Bode rope brake (model 580) was installed on this coal mine melevator. This rope brake installation was tested extensively by Mine Safety and Health Administration engineers from the Pittsburgh Safety and Health Technology Center. A summary of the findings will be presented in this study. Function The rope brake is a safety device to guard against overspeed in the upward and downward directions and to provide protection for uncontrolled elevator car movements The rope brake is activated when the normal running speed is exceeded by 15%as a result of a mechanical drive, motor control system, or machine brake failure. The rope brake does not guard against free fall as a result of a break in the suspension ropes. Standstill of the elevator car is also monitored by the rope brake system. If the elevator car moves more than 2 to 8 inches in either direction when the doors are open or not locked, the rope brake is activated and the control circuit interrupted. The rope brake control must be manually reset to restore normal operation. The rope brake also provides jammed conveyance protection for elevators and friction driven hoists. If the elevator car does not move when the drive sheave is turning, the rope brake will set, and the elevator control circuit will be interrupted. The rope brake control contains self-monitoring features. The rope brake is activated if a signal is not received from the pulse tachometer when the drive is running The rope brake requires electrical power and air pressure to function properly. The rope brake sets if the control power is interrupted. When the power is restored, the rope brake will automatically release. Typically, elevator braking systems are spring applied and electrically release. Therefore, no external energy source is needed to set the brake. The rope brake requires stored pressurized air to set the brake and stop the elevator. Therefore, monitoring of the air pressure is essential. If the working air pressure falls below a preset minimum, the motor armature current is interrupted, and the machine brake is set. When the air pressure is restored, the fault string is reset. Pneumatic Design The rope brake system is shown in figure 5. Starting from the air compressor tank, the pressurized air passes through a water separator and manual shut off valve to a check valve. The check valve was required to ensure the rope brake remains set even if an air leak develops in the compressed air supply. A pressure switch monitors for low air pressure at this point and will set the machine brake as mentioned earlier. The air supply is split after the check valve and goes to two independent magnetic two-way valves. The air supply is shut off (port A), while the magnetic valve coil is energized. When the magnetic valve coil is deenergized, the air supply is directed to the B port, which is open to the rope brake cylinder. The air pushes the piston inside the rope brake cylinder and forces a movable brake pad toward a stationary brake pad. The suspension ropes are clamped between the two brake pads. The rope brake is released by energizing the magnetic valve, which vents the pressurized rope brake cylinder to the atmosphere through a blowout silencer on port S. The force exerted on the suspension ropes equals the air pressure multiplied by the surface area of the piston. The rope brake model number 580 designates the diamoter of the brake cylinder in millimeters. T- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电梯 毕业设计 外文 翻译 样本
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文