历年高考理科数列真题汇编含答案解析.doc
《历年高考理科数列真题汇编含答案解析.doc》由会员分享,可在线阅读,更多相关《历年高考理科数列真题汇编含答案解析.doc(39页珍藏版)》请在咨信网上搜索。
高考数列选择题部分 (2016全国I)(3)已知等差数列前9项的和为27,,则 (A)100 (B)99 (C)98 (D)97 (2016上海)已知无穷等比数列的公比为,前n项和为,且.下列条件中,使得恒成立的是( ) (A) (B) (C) (D) (2016四川)5. 【题设】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是 (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) ( A)2018年 (B)2019年 (C)2020年 (D)2021年 (2016天津)(5)设{an}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n−1+a2n<0”的( ) (A)充要条件 (B)充分而不必要条件 (C)必要而不充分条件 (D)既不充分也不必要条件 (2016浙江)6. 如图,点列{An},{Bn}分别在某锐角的两边上,且, ,(). 若 A.是等差数列 B.是等差数列 C.是等差数列 D.是等差数列 1.【2015高考重庆,理2】在等差数列中,若=4,=2,则= ( ) A、-1 B、0 C、1 D、6 2.【2015高考福建,理8】若 是函数 的两个不同的零点,且 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 的值等于( ) A.6 B.7 C.8 D.9 3.【2015高考北京,理6】设是等差数列. 下列结论中正确的是( ) A.若,则 B.若,则 C.若,则 D.若,则 4.【2015高考浙江,理3】已知是等差数列,公差不为零,前项和是,若,,成等比数列,则( ) A. B. C. D. 1.【2014年重庆卷(理02)】对任意等比数列,下列说法一定正确的是( ) 成等比数列 成等比数列 成等比数列 成等比数列 2.【2014年全国大纲卷(10)】等比数列中,,则数列的前8项和等于( ) A.6 B.5 C.4 D.3 5.【2014年福建卷(理03)】等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于( ) A.8 B.10 C.12 D.14 高考数列填空题部分 (2016全国I)(15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2 …an的最大值为 . (2016上海)无穷数列由k个不同的数组成,为的前n项和.若对任意,,则k的最大值为________. (2016北京)12.已知为等差数列,为其前项和,若,,则_______.. (2016江苏)8. 已知{an}是等差数列,Sn是其前n项和.若a1+a22=3,S5=10,则a9的值是 ▲ . (2016浙江)13.设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1= ,S5= . 5.【2015高考安徽,理14】已知数列是递增的等比数列,,则数列的前项和等于 . 6.【2015高考新课标2,理16】设是数列的前n项和,且,,则________. 7.【2015高考广东,理10】在等差数列中,若,则= . 8.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 . 9.【2015江苏高考,11】数列满足,且(),则数列的前10项和为 3.【2014年广东卷(理13)】若等比数列的各项均为正数,且,则 。 4.【2014年江苏卷(理07)】在各项均为正数的等比数列中,若,,则的值是 . 6.【2014年天津卷(理11)】设是首项为,公差为的等差数列,为其前项和,若、、成等比数列,则的值为____________. 7.【2014年北京卷(理12)】若等差数列满足,,则当________时的前项和最大. 高考数列简答题部分 (2016全国II)17.(本题满分12分) 为等差数列的前n项和,且记,其中表示不超过的最大整数,如. (Ⅰ)求; (Ⅱ)求数列的前1 000项和. (2016全国III)(17)(本小题满分12分) 已知数列的前n项和,其中. (I)证明是等比数列,并求其通项公式; (II)若 ,求. (2016北京)20.(本小题13分) 设数列A: , ,… ().如果对小于()的每个正整数都有 < ,则称是数列A的一个“G时刻”.记“是数列A的所有“G时刻”组成的集合. (1)对数列A:-2,2,-1,1,3,写出的所有元素; (2)证明:若数列A中存在使得>,则 ;学.科网[来源:学§科§网] (3)证明:若数列A满足- ≤1(n=2,3, …,N),则的元素个数不小于 -. (2016四川)19. 【题设】(本小题满分12分) 已知数列{ }的首项为1, 为数列{ }的前n项和, ,其中q>0, . (I)若 成等差数列,求an的通项公式; (ii)设双曲线 的离心率为 ,且 ,证明:. (2016天津)(18) 已知是各项均为正数的等差数列,公差为,对任意的是和的等比中项. (Ⅰ)设,求证:是等差数列; (Ⅱ)设 ,求证: (2016山东)(18)(本小题满分12分) 已知数列 的前n项和Sn=3n2+8n,是等差数列,且 (Ⅰ)求数列的通项公式; (Ⅱ)令 求数列的前n项和Tn. (2016江苏)20. (本小题满分16分) 记.对数列和的子集T,若,定义;若 ,定义.例如:时,.现设是公比为3的等比数列,且当时,. (1)求数列的通项公式; (2)对任意正整数,若,求证:; (3)设,求证:. (2016浙江)20.(本题满分15分)设数列满足,. (I)证明:,; (II)若,,证明:,. 10.【2015江苏高考,20】(本小题满分16分) 设是各项为正数且公差为d的等差数列 (1)证明:依次成等比数列; (2)是否存在,使得依次成等比数列,并说明理由; (3)是否存在及正整数,使得依次成等比数列,并说 明理由. 11.【2015高考浙江,理20】已知数列满足=且=-() (1)证明:1(); (2)设数列的前项和为,证明(). 12.【2015高考山东,理18】设数列的前n项和为.已知. (I)求的通项公式; (II)若数列满足,求的前n项和. 13. 【2015高考安徽,理18】设,是曲线在点处的切线与x轴交点的横坐标. (Ⅰ)求数列的通项公式; (Ⅱ)记,证明. 14.【2015高考天津,理18】(本小题满分13分)已知数列满足,且 成等差数列. (I)求的值和的通项公式; (II)设,求数列的前项和. 15.【2015高考重庆,理22】在数列中, (1)若求数列的通项公式; (2)若证明: 16.【2015高考四川,理16】设数列的前项和,且成等差数列. (1)求数列的通项公式; (2)记数列的前n项和,求得成立的n的最小值. 17.【2015高考湖北,理18】设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,. (Ⅰ)求数列,的通项公式; (Ⅱ)当时,记,求数列的前项和. 18.【2015高考陕西,理21】(本小题满分12分)设是等比数列,,,,的各项和,其中,,. (I)证明:函数在内有且仅有一个零点(记为),且; (II)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为,比较 与的大小,并加以证明. 19.【2015高考新课标1,理17】为数列{}的前项和.已知>0,=. (Ⅰ)求{}的通项公式; (Ⅱ)设 ,求数列{}的前项和. 20.【2015高考广东,理21】数列满足, (1) 求的值; (2) 求数列前项和; (3) 令,,证明:数列的前项和满足. 【2015高考上海,理22】已知数列与满足,. (1)若,且,求数列的通项公式; (2)设的第项是最大项,即(),求证:数列的第项是最大项; (3)设,(),求的取值范围,使得有最大值与最小值,且. 8.【2014年湖南卷(理20)】(本小题满分13分) 已知数列满足,,. (1)若是递增数列,且,,成等差数列,求的值; (2)若,且是递增数列,是递减数列,求数列的通项公式. 9.【2014年全国大纲卷(18)】(本小题满分12分) 等差数列的前n项和为,已知,为整数,且. (1)求的通项公式; (2)设,求数列的前n项和. 10.【2014年山东卷(理19)】(本小题满分12分) 已知等差数列的公差为2,前项和为,且,,成等比数列。 (I)求数列的通项公式; (II)令=求数列的前项和。 11.【2014年全国新课标Ⅰ(理17)】(本小题满分12分)已知数列{}的前项和为,=1,,,其中为常数. (Ⅰ)证明:; (Ⅱ)是否存在,使得{}为等差数列?并说明理由. 高考数列选择题部分 (2016全国1)【答案】C 【解析】 试题分析:由已知,所以故选C. 考点:等差数列及其运算 (2016上海)【答案】B (2016四川)答案】B (2016天津) 【答案】C 【解析】 试题分析:由题意得,,故是必要不充分条件,故选C. (2016浙江) 【答案】A 【解析】表示点到对面直线的距离(设为)乘以长度一半,即,由题目中条件可知的长度为定值,那么我们需要知道的关系式,过作垂直得到初始距离,那么和两个垂足构成了等腰梯形,那么,其中为两条线的夹角,即为定值,那么,,作差后:,都为定值,所以为定值.故选A. 1.【2015高考重庆,理2】 【答案】B 【解析】由等差数列的性质得,选B. 2.【2015高考福建,理8】 【答案】D 【解析】由韦达定理得,,则,当适当排序后成等比数列时,必为等比中项,故,.当适当排序后成等差数列时,必不是等差中项,当是等差中项时,,解得,;当是等差中项时,,解得,,综上所述,,所以,选D. 3.【2015高考北京,理6】 【答案】C 【解析】先分析四个答案支,A举一反例,而,A错误,B举同样反例,,而,B错误,下面针对C进行研究,是等差数列,若,则设公差为,则,数列各项均为正,由于,则,选C. 4.【2015高考浙江,理3】 【答案】B. 1.【2014年重庆卷(理02)】 【答案】D 【解析】设公比为,因为,所以成等比数列,选择 2.【2014年全国大纲卷(10)】 【答案】C 【解析】∵等比数列{an}中a4=2,a5=5,∴a4•a5=2×5=10,∴数列{lgan}的前8项和 S=lga1+lga2+…+lga8=lg(a1•a2…a8)=lg(a4•a5)4=4lg(a4•a5)=4lg10=4故选:C 5.【2014年福建卷(理03)】 【答案】C 【解析】由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2, ∴a6=a1+5d=2+5×2=12,故选:C. (2016全国I) 【答案】 (2016上海) 答案】4 【解析】试题分析: 要满足数列中的条件,涉及最多的项的数列可以为,所以最多由4个不同的数组成. (2016北京)【答案】6 【解析】 试题分析:∵是等差数列,∴,,,, ∴,故填:6. (2016江苏)【答案】 【解析】由得,因此 (2016浙江)【答案】 5.【2015高考安徽,理14】 答案】 【解析】由题意,,解得或者,而数列是递增的等比数列,所以,即,所以,因而数列的前项和 . 6.【2015高考新课标2,理16】【答案】 【解析】由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以. 7.【2015高考广东,理10】【答案】. 【解析】因为是等差数列,所以,即,所以,故应填入. 8.【2015高考陕西,理13】 【答案】 【解析】设数列的首项为,则,所以,故该数列的首项为,所以答案应填:. 9.【2015江苏高考,11】 【答案】 3.【2014年广东卷(理13)】 【答案】 【解析】由题意得,,又∵, ∴====. 4.【2014年江苏卷(理07)】【答案】4 【解析】根据等比数列的定义,,所以由得,消去,得到关于的一元二次方程,解得, 6.【2014年天津卷(理11)】【答案】 【解析】依题意得,所以,解得. 7.【2014年北京卷(理12)】 【答案】8 【解析】由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0, ∴等差数列{an}的前8项为正数,从第9项开始为负数,∴等差数列{an}的前8项 和最大,故答案为:8 高考数列简答题 (2016全国II) 【答案】(Ⅰ),, ;(Ⅱ)1893. 考点:等差数列的的性质,前项和公式,对数的运算. (2016全国III) 【答案】(Ⅰ);(Ⅱ). 【解析】 考点:1、数列通项与前项和为关系;2、等比数列的定义与通项及前项和为. (2016北京) 【答案】(1)的元素为和;(2)详见解析;(3)详见解析. 如果,取,则对任何. 从而且. 又因为是中的最大元素,所以. 考点:数列、对新定义的理解. (2016四川) 【答案】(Ⅰ);(Ⅱ)详见解析. 试题解析:(Ⅰ)由已知, 两式相减得到. 又由得到,故对所有都成立. 所以,数列是首项为1,公比为q的等比数列. 从而. 由成等比数列,可得,即,则, 由已知,,故 . 所以. (Ⅱ)由(Ⅰ)可知,. 所以双曲线的离心率 . 由解得. 因为,所以. 于是, 故. 考点:数列的通项公式、双曲线的离心率、等比数列的求和公式. (2016天津)(18) 【答案】(Ⅰ)详见解析(Ⅱ)详见解析 考点:等差数列、等比中项、分组求和、裂项相消求和 (2016山东) 【答案】(Ⅰ);(Ⅱ). (Ⅱ)由(Ⅰ)知, 又, 得, , 两式作差,得 所以 考点:数列前n项和与第n项的关系;等差数列定义与通项公式;错位相减法 [来源:学.科.网] (2016江苏) 【答案】(1)(2)详见解析(3)详见解析[来源:学科网] (3)下面分三种情况证明. ①若是的子集,则. ②若是的子集,则. ③若不是的子集,且不是的子集. 考点:等比数列的通项公式、求和 (2016浙江) 【试题分析】(I)先利用三角形不等式得,变形为,再用累加法可得,进而可证;(II)由(I)可得,进而可得,再利用的任意性可证. (II)任取,由(I)知,对于任意, , 故 . 从而对于任意,均有 10.【2015江苏高考,20】 【答案】(1)详见解析(2)不存在(3)不存在 【解析】 试题分析(1)根据等比数列定义只需验证每一项与前一项的比值都为同一个不为零的常数即可(2)本题列式简单,变形较难,首先令将二元问题转化为一元,再分别求解两个高次方程,利用消最高次的方法得到方程:,无解,所以不存在(3)同(2)先令将二元问题转化为一元,为降次,所以两边取对数,消去n,k得到关于t的一元方程,从而将方程的解转化为研究函数零点情况,这个函数需要利用二次求导才可确定其在上无零点 试题解析:(1)证明:因为(,,)是同一个常数, 所以,,,依次构成等比数列. (2)令,则,,,分别为,,,(,,). 假设存在,,使得,,,依次构成等比数列, 则,且. 令,则,且(,), 化简得(),且.将代入()式, ,则. 显然不是上面方程得解,矛盾,所以假设不成立, 因此不存在,,使得,,,依次构成等比数列. (3)假设存在,及正整数,,使得,,,依次构成等比数列, 则,且. 分别在两个等式的两边同除以及,并令(,), 则,且. 将上述两个等式两边取对数,得, 且. 化简得, 且. 令,则. 由,, 知,,,在和上均单调. 故只有唯一零点,即方程()只有唯一解,故假设不成立. 所以不存在,及正整数,,使得,,,依次构成等比数列. 11.【2015高考浙江,理20】 【答案】(1)详见解析;(2)详见解析. 试题分析:(1)首先根据递推公式可得,再由递推公式变形可知 ,从而得证;(2)由和得, ,从而可得,即可得证. 试题解析:(1)由题意得,,即,,由 得,由得, ,即;(2)由题意得, ∴①,由和得,, ∴,因此②,由①②得 . 12.【2015高考山东,理18】 【答案】(I); (II). 所以 当 时, 所以 两式相减,得 所以 经检验, 时也适合, 综上可得: 13. 【2015高考安徽,理18】 【解析】 试题分析:(Ⅰ)对题中所给曲线的解析式进行求导,得出曲线在点处的切线斜率为.从而可以写出切线方程为.令.解得切线与轴交点的横坐标. (Ⅱ)要证,需考虑通项,通过适当放缩能够使得每项相消即可证明.思路如下:先表示出,求出初始条件当时,.当时,单独考虑,并放缩得,所以 ,综上可得对任意的,均有. 试题解析:(Ⅰ)解:,曲线在点处的切线斜率为. 从而切线方程为.令,解得切线与轴交点的横坐标. (Ⅱ)证:由题设和(Ⅰ)中的计算结果知 . 当时,. 当时,因为, 所以. 综上可得对任意的,均有. 14.【2015高考天津,理18】 【答案】(I) ; (II) . (II) 由(I)得,设数列的前项和为,则 , 两式相减得 , 整理得 所以数列的前项和为. 15.【2015高考重庆,理22】 【答案】(1);(2)证明见解析. 【解析】 试题分析:(1)由于,因此把已知等式具体化得,显然由于,则(否则会得出),从而,所以是等比数列,由其通项公式可得结论;(2)本小题是数列与不等式的综合性问题,数列的递推关系是可变形为, 由于,因此,于是可得,即有,又,于是有 ,这里应用了累加求和的思想方法,由这个结论可知,因此 ,这样结论得证,本题不等式的证明应用了放缩法.(1)由,有 若存在某个,使得,则由上述递推公式易得,重复上述过程可得,此与矛盾,所以对任意,. 从而,即是一个公比的等比数列. 故. 求和得 另一方面,由上已证的不等式知得 综上: 16.【2015高考四川,理16】 【答案】(1);(2)10. 【解析】(1)由已知,有, 即. 从而. 又因为成等差数列,即. 所以,解得. 所以,数列是首项为2,公比为2的等比数列. 故. (2)由(1)得. 所以. 由,得,即. 因为, 所以. 于是,使成立的n的最小值为10. 17.【2015高考湖北,理18】 【答案】(Ⅰ)或;(Ⅱ). . ② ①-②可得, 故. 18.【2015高考陕西,理21】 【答案】(I)证明见解析;(II)当时, ,当时,,证明见解析. 【解析】 试题分析:(I)先利用零点定理可证在内至少存在一个零点,再利用函数的单调性可证在内有且仅有一个零点,进而利用是的零点可证;(II)先设,再对的取值范围进行讨论来判断与的大小,进而可得和的大小. 试题解析:(I),则 所以在内至少存在一个零点. 又,故在内单调递增, 所以在内有且仅有一个零点. 因为是的零点,所以,即,故. (II)解法一:由题设, 所以,即. 综上所述,当时, ;当时 解法二 由题设, 当时, 当时, 用数学归纳法可以证明. 当时, 所以成立. 假设时,不等式成立,即. 那么,当时, . 又 令,则 所以当,,在上递减; 当,,在上递增. 所以,从而 故.即,不等式也成立. 所以,对于一切的整数,都有. 解法三:由已知,记等差数列为,等比数列为,则,, 所以, 令 当时, ,所以. 当时, 而,所以,. 若,,, 当,,, 从而在上递减,在上递增.所以, 所以当又,,故 综上所述,当时,;当时. 19.【2015高考新课标1,理17】 【答案】(Ⅰ)(Ⅱ) 所以=; (Ⅱ)由(Ⅰ)知,=, 所以数列{}前n项和为= =. 20.【2015高考广东,理21】 【答案】(1);(2);(3)见解析. 【解析】(1)依题, ∴ ; (2)依题当时,, ∴ ,又也适合此式, ∴ , ∴ 数列是首项为,公比为的等比数列,故; (3)依题由知,,, 【2015高考上海,理22】 【答案】(1)(2)详见解析(3) 【解析】解:(1)由,得, 所以是首项为,公差为的等差数列, 故的通项公式为,. 证明:(2)由,得. 所以为常数列,,即. 因为,,所以,即. 故的第项是最大项. 解:(3)因为,所以, 当时, . 当时,,符合上式. 所以. 因为,所以,. ①当时,由指数函数的单调性知,不存在最大、最小值; ②当时,的最大值为,最小值为,而; ③当时,由指数函数的单调性知,的最大值,最小值,由及,得. 综上,的取值范围是. 8.【2014年湖南卷(理20)】 解:(1)因为是递增数列,所以,而,因此 ,,又,,成等差数列,所以 ,因而,解得或, 但当时,,与是递增数列相矛盾,故. (2) 由于是递增数列,因而 ,于是 ① 且 ,所以 ② 则①②可知,,因此, ③ 因为是递减数列,同理可得, 故, ④ 由③④即得 . 于是 故数列的通项公式为 9.【2014年全国大纲卷(18)】 解:(1)设等差数列的公差为,而,从而有 若,,此时不成立 若,数列是一个单调递增数列,随着的增大而增大,也不满足 当时,数列是一个单调递减数列,要使,则须满足即,又因为为整数,所以,所以 此时 (2)由(1)可得 所以 . 10.【2014年山东卷(理19)】 解:(I) 解得 (II) 11.【2014年全国新课标Ⅰ(理17)】 【解析】:(Ⅰ)由题设,,两式相减 ,由于,所以 …………6分 (Ⅱ)由题设=1,,可得,由(Ⅰ)知 假设{}为等差数列,则成等差数列,∴,解得; 证明时,{}为等差数列:由知 数列奇数项构成的数列是首项为1,公差为4的等差数列 令则,∴ 数列偶数项构成的数列是首项为3,公差为4的等差数列 令则,∴ ∴(), 因此,存在存在,使得{}为等差数列. ………12分- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 历年 高考 理科 数列 汇编 答案 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文