高考数学函数专题习题集答案解析.doc
《高考数学函数专题习题集答案解析.doc》由会员分享,可在线阅读,更多相关《高考数学函数专题习题集答案解析.doc(11页珍藏版)》请在咨信网上搜索。
WORD格式整理版 函数专题练习 (一) 选择题(12个) 1.函数的反函数是( ) A. B. C. D. 2.已知是上的减函数,那么的取值范围是 (A) (B) (C) (D) 3.在下列四个函数中,满足性质:“对于区间上的任意,恒成立”的只有 (A) (B) (C) (D) 4.已知是周期为2的奇函数,当时,设则 (A) (B) (C) (D) 5.函数的定义域是 A. B. C. D. 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A. B. C. D. 7、函数的反函数的图像与轴交于点 (如右图所示),则方程在上的根是 A.4 B.3 C. 2 D.1 8、设是R上的任意函数,则下列叙述正确的是 (A)是奇函数 (B)是奇函数 (C) 是偶函数 (D) 是偶函数 9、已知函数的图象与函数的图象关于直线对称,则 A. B. C. D. 10、设 (A)0 (B)1 (C)2 (D)3 11、对a,bR,记max{a,b}=,函数f(x)=max{|x+1|,|x-2|}(xR)的最小值是 (A)0 (B) (C) (D)3 12、关于的方程,给出下列四个命题: ①存在实数,使得方程恰有2个不同的实根; ②存在实数,使得方程恰有4个不同的实根; ③存在实数,使得方程恰有5个不同的实根; ④存在实数,使得方程恰有8个不同的实根; 其中假命题的个数是 A.0 B.1 C.2 D.3 (二) 填空题(4个) 1.函数对于任意实数满足条件,若则_______________。 2设则__________ 3.已知函数,若为奇函数,则________。 4. 设,函数有最小值,则不等式的解集为 。 (三) 解答题(6个) 1. 设函数. (1)在区间上画出函数的图像; (2)设集合. 试判断集合和之间的关系,并给出证明; (3)当时,求证:在区间上,的图像位于函数图像的上方. 2、设f(x)=3ax,f(0)>0,f(1)>0,求证: (Ⅰ)a>0且-2<<-1; (Ⅱ)方程f(x)=0在(0,1)内有两个实根. 3. 已知定义域为的函数是奇函数。 (Ⅰ)求的值; (Ⅱ)若对任意的,不等式恒成立,求的取值范围; 4.设函数f(x)=其中a为实数. (Ⅰ)若f(x)的定义域为R,求a的取值范围; (Ⅱ)当f(x)的定义域为R时,求f(x)的单减区间. 5. 已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同. (I)用表示,并求的最大值; (II)求证:(). 6. 已知函数,是方程f(x)=0的两个根,是f(x)的导数;设,(n=1,2,……) (1)求的值; (2)证明:对任意的正整数n,都有>a; (3)记(n=1,2,……),求数列{bn}的前n项和Sn。 (四) 创新试题 1. 下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口的机动车辆数如图所示,图中分别表示该时段单位时间通过路段、、的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则 (A) (B) (C) (D) 2. 设函数f(x)=3sinx+2cosx+1。若实数a、b、c使得af(x)+bf(x−c)=1对任意实数x恒成立,则的值等于( ) A. B. C. −1 D. 1 解答: 一、选择题 1解:由得:,所以为所求,故选D。 2解:依题意,有0<a<1且3a-1<0,解得0<a<,又当x<1时,(3a-1)x+4a>7a-1,当x>1时,logax<0,所以7a-1³0解得x³故选C 3解:|>1<1\ |<|x1-x2|故选A 4解:已知是周期为2的奇函数,当时,设,,<0,∴,选D. 5解:由,故选B. 6解:B在其定义域内是奇函数但不是减函数;C在其定义域内既是奇函数又是增函数;D在其定义域内不是奇函数,是减函数;故选A. 7解:的根是2,故选C 8解:A中则, 即函数为偶函数,B中,此时与的关系不能确定,即函数的奇偶性不确定, C中,,即函数为奇函数,D中,,即函数为偶函数,故选择答案D。 9解:函数的图象与函数的图象关于直线对称,所以是的反函数,即=,∴ ,选D. 10解:f(f(2))=f(1)=2,选C 11解:当x<-1时,|x+1|=-x-1,|x-2|=2-x,因为(-x-1)-(2-x)=-3<0,所以2-x>-x-1;当-1£x<时,|x+1|=x+1,|x-2|=2-x,因为(x+1)-(2-x)=2x-1<0,x+1<2-x;当£x<2时,x+1³2-x;当x³2时,|x+1|=x+1,|x-2|=x-2,显然x+1>x-2; 故据此求得最小值为。选C 12解:关于x的方程可化为…(1) 或(-1<x<1)…………(2) ① 当k=-2时,方程(1)的解为±,方程(2)无解,原方程恰有2个不同的实根 ② 当k=时,方程(1)有两个不同的实根±,方程(2)有两个不同的实根±,即原方程恰有4个不同的实根 ③ 当k=0时,方程(1)的解为-1,+1,±,方程(2)的解为x=0,原方程恰有5个不同的实根 ④ 当k=时,方程(1)的解为±,±,方程(2)的解为±,±,即原方程恰有8个不同的实根 选A 二、填空题。 1解:由得,所以,则。 2解:. 3解:函数若为奇函数,则,即,a=. 4解:由,函数有最小值可知a>1,所以不等式可化为x-1>1,即x>2. 三、解答题 1解:(1) (2)方程的解分别是和,由于在和上单调递减,在和上单调递增,因此 . 由于. (3)[解法一] 当时,. , . 又, ① 当,即时,取, . , 则. ② 当,即时,取, =. 由 ①、②可知,当时,,. 因此,在区间上,的图像位于函数图像的上方. [解法二] 当时,. 由 得, 令 ,解得 或, 在区间上,当时,的图像与函数的图像只交于一点; 当时,的图像与函数的图像没有交点. 如图可知,由于直线过点,当时,直线是由直线绕点逆时针方向旋转得到. 因此,在区间上,的图像位于函数图像的上方. 2(I)证明:因为,所以. 由条件,消去,得; 由条件,消去,得,. 故. (II)抛物线的顶点坐标为, 在的两边乘以,得. 又因为而 所以方程在区间与内分别有一实根。 故方程在内有两个实根. 3解:(Ⅰ)因为是奇函数,所以=0,即 又由f(1)= -f(-1)知 (Ⅱ)解法一:由(Ⅰ)知,易知在上 为减函数。又因是奇函数,从而不等式: 等价于,因为减函数,由上式推得: .即对一切有:, 从而判别式 解法二:由(Ⅰ)知.又由题设条件得: , 即 :, 整理得 上式对一切均成立,从而判别式 4解:(Ⅰ)的定义域为,恒成立,, ,即当时的定义域为. (Ⅱ),令,得. 由,得或,又, 时,由得; 当时,;当时,由得, 即当时,的单调减区间为; 当时,的单调减区间为. 5解:(Ⅰ)设与在公共点处的切线相同. ,,由题意,. 即由得:,或(舍去). 即有. 令,则.于是 当,即时,; 当,即时,. 故在为增函数,在为减函数, 于是在的最大值为. (Ⅱ)设, 则. 故在为减函数,在为增函数, 于是函数在上的最小值是. 故当时,有,即当时,. 6解析:(1)∵,是方程f(x)=0的两个根, ∴; (2), =,∵,∴有基本不等式可知(当且仅当时取等号),∴同,样,……,(n=1,2,……), (3),而,即, ,同理,,又 四、 创新试题 1解:依题意,有x1=50+x3-55=x3-5,\x1<x3,同理,x2=30+x1-20=x1+10\x1<x2,同理,x3=30+x2-35=x2-5\x3<x2故选C 2解:令c=π,则对任意的x∈R,都有f(x)+f(x−c)=2,于是取,c=π,则对任意的x∈R,af(x)+bf(x−c)=1,由此得。选C。 1、发生以下情形,本协议即终止:(1)、公司因客观原因未能设立;(2)、公司营业执照被依法吊销;(3)、公司被依法宣告破产;(4)、甲乙丙三方一致同意解除本协议。2、本协议解除后:(1)甲乙丙三方共同进行清算,必要时可聘请中立方参与清算;(2)若清算后有剩余,甲乙丙三方须在公司清偿全部债务后,方可要求返还出资、按出资比例分配剩余财产。(3)若清算后有亏损,各方以出资比例分担,遇有股东须对公司债务承担连带责任的,各方以出资比例偿还。 学习好帮手- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 函数 专题 习题集 答案 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文