2016年高考理科数学试题及答案-全国卷1.doc
《2016年高考理科数学试题及答案-全国卷1.doc》由会员分享,可在线阅读,更多相关《2016年高考理科数学试题及答案-全国卷1.doc(19页珍藏版)》请在咨信网上搜索。
2016年普通高等学校招生全统一考试(全国1卷) 理科数学 第Ⅰ卷 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 设集合,,则 (A)(,) (B)(,) (C)(,) (D)(,) (2) 设,其中,是实数,则 (A)1 (B) (C) (D)2 (3) 已知等差数列前9项的和为27,,则 (A)100 (B)99 (C)98 (D)97 (4) 某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A) (B) (C) (D) (5) 已知方程表示双曲线,且该双曲线两焦点间的距离为4,则的取值范围是 (A)(,) (B)(,) (C)(,) (D)(,) (6) 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是 (A)17π (B)18π (C)20π (D)28π (7) 函数在的图象大致为 (A) (B) (C) (D) 是 否 输入 输出 开始 结束 (8) 若,,则 (A) (B) (C) (D) (9) 执行右图的程序框图,如果输入的,,,则输出的值满足 (A) (B) (C) (D) (10) 以抛物线的顶点为圆心的圆交于,两点,交的准线于,两点.已知,,则的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 (11) 平面过正方体的顶点,∥平面,∩平面,∩平面,则所成角的正弦值为 (A) (B) (C) (D) (12) 已知函数,为的零点,为图象的对称轴,且在单调,则的最大值为 (A)11 (B)9 (C)7 (D)5 第Ⅱ卷 本卷包括必考题和选考题两部分。第(13)~(21)题为必考题,每个试题都必须作答。第(22)~(24)题为选考题,考生根据要求作答。 二、填空题:本题共4小题,每小题5分。 (13) 设向量,,且,则 . (14) 的展开式中,的系数是 .(用数字填写答案) (15) 设等比数列满足,,则的最大值为 . (16) 某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件A产品的利润为2100元,生产一件B产品的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600工时的条件下,生产产品A、产品B的利润之和的最大值为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤。 (17) (本小题满分12分) 的内角的对边分别为,已知. (Ⅰ)求; (Ⅱ)若,的面积为.求的周长. (18) (本小题满分12分) 如图,在以为顶点的五面体中,面为正方形,,,且二面角与二面角都是60°. (Ⅰ)证明:平面⊥平面; (Ⅱ)求二面角的余弦值. (19) (本小题满分12分) 某公司计划购买2台机器,该种机器使用三年后被淘汰.机器有一易损零件,在购买机器时,可以额外购买这种零件为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种三年使用期内更换的易损零件,得下面柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的频率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数. (Ⅰ)求的分布列; (Ⅱ)若要求,确定的最小值; (Ⅲ)以购买易损零件所需要的期望值为决策依据,在与之中选其一,应选用哪个? (20) (本小题满分12分) 设圆的圆心为,直线过点且与轴不重合,交圆于两点,过作的平行线交于点. (Ⅰ)证明为定值,并写出点的轨迹方程; (Ⅱ)设点的轨迹为曲线,直线交于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围. (21) (本小题满分12分) 已知函数有两个零点. (Ⅰ)求的取值范围; (Ⅱ)设是的两个零点,证明:. 请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题计分。 (22) (本小题满分10分)选修4-1:几何证明选讲 如图,是等腰三角形,.以为圆心,为半径作圆. (Ⅰ)证明:直线与⊙相切; (Ⅱ)点在⊙上,且四点共圆,证明:. (23) (本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,曲线的参数方程为(为参数,).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线:. (Ⅰ)说明是哪一种曲线,并将的方程化为极坐标方程; (Ⅱ)直线的极坐标方程为,其中满足,若曲线与的公共点都在上,求. (24) (本小题满分10分)选修4-5:不等式选讲 已知函数. (Ⅰ)在答题卡第(24)题图中画出的图像; (Ⅱ)求不等式的解集. 2016年全国卷Ⅰ高考数学(理科)答案与解析 一、选择题 【答案】 (1)D (2)B (3)C (4)B (5)A (6)A (7)D (8)C (9)C (10)B (11)A (12)B 【解析】 (1) ,,∴ . (2) ∵即∴,解得:,∴. (3) ∵∴,∵∴,∴. (4) 如图所示,画出时间轴: 小明到达的时间会随机的落在图中线段AB中,而当他的到达时间落在线段AC或DB时,才能保证他等车的时间不超过10分钟, 根据几何概型,所求概率. (5) 表示双曲线,则,∴, ∵ 解得,∴. (6) 原立体图如图所示: 是一个球被切掉左上角的1/8后的三视图,表面积是7/8的球面面积和三个扇形面积之和, ∴ (7) ,排除A; ,排除B; 时, ,,当时,∴在单调递减,排除C; 故选D (8) 对A: 由于,∴函数在上单调递增,因此,A错误; 对B: 由于,∴函数在上单调递减, ∴,B错误 对C: 要比较和,只需比较和,只需比较和,只需和 构造函数,则,在上单调递增,因此 又由得,∴,C正确 对D: 要比较和,只需比较和 而函数在上单调递增,故 又由得,∴,D错误 故选C. 【2°用特殊值法,令得,排除A;,排除B;,C正确;,排除D;∴选C】 循环节运行次数 判断 是否输出 运行前 0 1 / / 1 第一次 否 否 第二次 否 否 第三次 是 是 (9) 如下表: 输出,,满足,故选C. (10) 以开口向右的抛物线为例来解答,其他开口同理 设抛物线为,设圆的方程为,题目条件翻译如图: F 设,, 点在抛物线上,∴……① 点在圆上,∴……② 点在圆上,∴……③ 联立①②③解得:,焦点到准线的距离为. 2°【如图,设抛物线方程为,圆的半径为r,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4】 (11) 如图所示: ∵,∴若设平面平面,则 又∵平面∥平面,结合平面平面 ∴,故 同理可得: 故、的所成角的大小与、所成角的大小相等,即的大小. 而(均为面对交线),因此,即. (12) 由题意知: 则,其中 在单调, 接下来用排除法 若,此时,在递增,在递减,不满足在单调; 若,此时,满足在单调递减 二、填空题 【答案】 (13)-2 (14)10 (15)64 (16)216 000 【解析】 (13) 由已知得,∴,解得. 2°得,∴,解得. (14) 的展开式的通项为(,1,2,…,5),令得,所以的系数是. (15) 设等比数列的公比为,∴,解得,故,∴∴当时,取得最大值. (16) 设生产A产品件,B产品件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为 目标函数 作出可行域为图中的四边形,包括边界,顶点为 在处取得最大值, 三、解答题 (17) 解: (I) 由已知及正弦定理的, , 即, 故, 可得,∴. (II) 由已知,, 又,∴, 由已知及余弦定理得,, 故,从而, ∴的周长为 (18)解: (I) 由已知可得AF⊥DF,AF⊥FE,∴AF⊥平面EFDC. 又AF平面ABEF,故平面ABEF⊥平面EFDC. (II) 过D作DG⊥EF,垂足为G,由(Ⅰ)知DG⊥平面ABEF, 以G为坐标原点,GF的方向为x轴正方向,GF为单位长,建立如图所示的空间直角坐标系G-xyz. 由(Ⅰ)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°, 则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3), 由已知,AB∥EF,∴AB∥平面EFDC, 又平面ABCD ⋂平面EFDC=CD,故AB∥CD,CD∥EF, 由BE∥AF,可得BE⊥平面EFDC,∴∠CEF为二面角C-BE-F的平面角,∠CEF=60°,从而可得C(-2,0,3), ∴EC=1,0,3,EB=0,4,0,AC=-3,-4,3,AB=(-4,0,0), 设n=(x,y,z)是平面BCE的法向量,则n⋅EC=0,n⋅EB=0,即x+3z=04y=0 ,∴可取n=(3,0,-3), 设m是平面ABCD的法向量,则m⋅AC=0,m⋅AB=0,同理可取m=(0,3,4), 则cosn,m=n⋅mn⋅m=-21919,故二面角E-BC-A的余弦值为-21919 . (19)解: (I) 由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数位8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而 P(X=16)=0.2×0.2=0.04, P(X=17)=2×0.2×0.4=0.16, P(X=18)=2×0.2×0.2+0.4×0.4=0.24, P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24, P(X=20)=2×0.2×0.4+0.2×0.2=0.2, P(X=21)=2×0.2×0.2=0.08, P(X=22)= 0.2×0.2=0.04, X 16 17 18 19 20 21 22 P 0.04 0.16 0.24 0.24 0.2 0.08 0.04 所以X的分布列为 (II) 由(Ⅰ)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19. (III) 记Y表示2台机器在购买易损零件上所需的费用(单位:元), 当n=19时,EY=19×200×0.68+(19×200+500) ×0.2+(19×200+2×500) ×0.08+(19×200+3×500) ×0.04=4040. 当n=20时,EY=20×200×0.88+(20×200+500) ×0.08+(20×200+2×500) ×0.04=4080. 可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19. (20)解: (I) ∵AD=AC,EB∥AC,故∠EBD=∠ACD=∠ADC. ∴EB=ED,故EA+EB=EA+ED. 又圆A的标准方程为,从而AD=4,∴EA+EB=4. 由题设得A(-1,0),B(1,0),AB=2,由椭圆定义可得点E的轨迹方程为:. (II) 当l与x轴不垂直时,设l的方程为,,. 由,得. 则,;∴. 过点B(1,0)且与l垂直的直线m:,A到m的距离为, ∴. 故四边形MPNQ的面积. 可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为. 当l与x轴垂直时,其方程为,四边形MPNQ的面积为12. 综上,四边形MPNQ面积的取值范围为 (21)解: (I) . (i) 设,则,只有一个零点. (ii) 设,则当时,;当时,. ∴在单调递减,在单调递增. 又,取b满足且,则, 故存在两个零点. (iii) 设,由得或. 若,则,故当时,,因此在单调递增.又当时,,∴不存在两个零点; 若,则,故当时,;当时,.因此在单调递减,在单调递增.又当时,,∴不存在两点零点. 综上,的取值范围为. (II) 不妨设,由(Ⅰ)知,,,,在单调递减,∴,即. ∵,而, ∴. 设,则. ∴当时,,而,故当时. 从而,故. (22)解: (I) 设E是AB的中点,连结OE. ∵OA=OB,∠AOB=120°,∴OE⊥AB,∠AOE=60°. 在Rt△AOE中,OE =12AO,即O到直线AB的距离等于⊙O的半径,∴AB与⊙O相切. (II) ∵OA=2OD,∴O不是A,B,C,D四点所在圆的圆心.设是A,B,C,D四点所在圆的圆心,作直线OO′. 由已知得O在线段AB的垂直平分线上,又O′在线段AB的垂直平分线上,∴OO′⊥AB. 同理可证,OO′⊥CD.∴AB∥CD. (23)解: (I) 消去参数得到的普通方程.是以(0,1)为圆心,a为半径的圆. 将代入的普通方程中,得到的极坐标方程为. (II) 曲线的公共点的极坐标满足方程组, 若,由方程组得,由已知,可得,从而,解得(舍去),. 时,极点也为的公共点,在上. ∴. (24)解: (I) ,的图像如图所示. (II) 由得表达式及图像,当时,可得或; 当时,可得或; 故的解集为;的解集为. ∴的解集为. 理科数学试卷 A型 第19页(共5页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 年高 理科 数学试题 答案 全国卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文