人教版七年级数学下册期末试题(及答案).doc
《人教版七年级数学下册期末试题(及答案).doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册期末试题(及答案).doc(23页珍藏版)》请在咨信网上搜索。
人教版七年级数学下册期末试题(及答案) 一、选择题 1.16的平方根是(). A.8 B.4 C. D. 2.在下面的四幅图案中,能通过图案(1)平移得到的是( ) A. B. C. D. 3.已知点P的坐标为,则点P在第( )象限. A.一 B.二 C.三 D.四 4.下列命题是假命题的是( ) A.垂线段最短 B.内错角相等 C.在同一平面内,不重合的两条直线只有相交和平行两种位置关系 D.若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直 5.如图所示,,OE平分∠AOD,,,则∠BOF为( ) A. B. C. D. 6.下列说法中正确的是( ) A.有理数和数轴上的点一一对应 B.0.304精确到十分位是0.30 C.立方根是本身的数只有0 D.平方根是本身的数只有0 7.如图,已知,点在上,连接,作平分交于点,,则的度数为( ). A. B. C. D. 8.如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A100的坐标为( ) A.(101,100) B.(150,51) C.(150,50) D.(100,53) 九、填空题 9.计算:﹣=_____. 十、填空题 10.已知点与点关于轴对称,则的值为__________. 十一、填空题 11.如图,在平面直角坐标系中,点,,三点的坐标分别是,,,过点作,交第一象限的角平分线于点,连接交轴于点.则点的坐标为______. 十二、填空题 12.如图,己知AB∥CD.OE平分∠AOC,OE⊥OF,∠C=50°,则∠AOF的度数为___. 十三、填空题 13.把一张长方形纸条按如图所示折叠后,若,则_______; 十四、填空题 14.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____. 十五、填空题 15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 十六、填空题 16.在平面直角坐标系中,对于点,我们把点叫做点的和谐点.已知点的和谐点为,点的和谐点为,点的和谐点为,……,这样依次得到点,,,…,.若点的坐标为,则点的坐标为______. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求下列各式中x的值 (1)81x2 =16 (2) 十九、解答题 19.如图,,,求度数.完成说理过程并注明理由. 解:∵, ∴________( ) 又∵, ∴, ∴__________( ) ∴( ) ∵, ∴______度. 二十、解答题 20.如图,在平面直角坐标系中,DABC的顶点 C的坐标为(1,3).点A、B分别在格点上. (1)直接写出A、B两点的坐标; (2)若把DABC向上平移3个单位,再向右平移2个单位得DA¢B¢C¢,画出DA¢B¢C¢; (3)若DABC内有一点 M(m,n),按照(2)的平移规律直接写出平移后点M的对应点 M¢的坐标. 二十一、解答题 21.已知的平方根是,的立方根是4,的算术平方根是m. (1)求m的值; (2)如果,其中x是整数,且,求的值. 二十二、解答题 22.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么? 二十三、解答题 23.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点. (1)当时,的度数是_______; (2)当,求的度数(用的代数式表示); (3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律. (4)当点运动到使时,请直接写出的度数. 二十四、解答题 24.如图1,,在、内有一条折线. (1)求证:; (2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论; (3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,,(其中为常数且),直接写出与的数量关系. 二十五、解答题 25.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 【参考答案】 一、选择题 1.C 解析:C 【分析】 如果一个数x的平方等于a,那么这个数x就叫做a的平方根(或二次方根).根据平方根的定义求解即可. 【详解】 解:(±4)2=16 16的平方根是4. 故选C. 【点睛】 主要考查平方根的定义,牢记正数的两个平方根互为相反数是解答本题的关键. 2.C 【分析】 平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可. 【详解】 解:A、对应点的连线相交,不能通过平移得到,不符合题意; B、对应点的连线相交,不能通过平移得到,不符合题 解析:C 【分析】 平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可. 【详解】 解:A、对应点的连线相交,不能通过平移得到,不符合题意; B、对应点的连线相交,不能通过平移得到,不符合题意; C、可通过平移得到,符合题意; D、对应点的连线相交,不能通过平移得到,不符合题意; 故选:C. 【点睛】 本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型. 3.B 【分析】 直接利用第二象限内的点:横坐标小于0,纵坐标大于0,即可得出答案. 【详解】 解:∵点P的坐标为P(-2,4), ∴点P在第二象限. 故选:B. 【点睛】 此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键. 4.B 【分析】 根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案. 【详解】 A、垂线段最短,正确,是真命题,不符合题意; B、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内错角相等),符合题意; C、在同一平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意; D、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等,则四个角一定全相等,都是,所以互相垂直,不符合题意; 故选:B. 【点睛】 题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理. 5.B 【分析】 由平行线的性质和角平分线的定义,求出,,然后即可求出∠BOF的度数. 【详解】 解:∵, ∴,, ∵OE平分∠AOD, ∴, ∴; ∴; 故选:B. 【点睛】 本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数. 6.D 【分析】 根据实数与数轴、精确度、立方根及平方根的概念和性质逐项判断即可. 【详解】 解:A. 实数和数轴上的点一一对应,原说法错误; B. 0.304精确到十分位是0.3,原说法错误; C. 立方根是本身的数是0、±1,原说法错误; D. 平方根是本身的数只有0,正确, 故选:D. 【点睛】 本题考查了实数与数轴、精确度、立方根及平方根的概念和性质,熟练掌握基础知识是解题关键. 7.A 【分析】 由平行线的性质可得,再由角平分线性质可得,利用邻补角可求的度数. 【详解】 解:,, , 平分交于点, , . 故选:A. 【点睛】 本题主要考查平行线的性质及角平分线的定义,解答的关键是熟记并灵活运用平行线的性质. 8.B 【分析】 观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1 解析:B 【分析】 观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1,则可求A100(150,51). 【详解】 解:观察图形可得,奇数点:A1(2,0),A3(5,1),A5(8,2),…,A2n-1(3n-1,n-1), 偶数点:A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1), ∵100是偶数,且100=2n, ∴n=50, ∴A100(150,51), 故选:B. 【点睛】 本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键. 九、填空题 9.﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 解析:﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 十、填空题 10.-1 【分析】 直接利用关于y轴对称点的性质得出a,b的值进而得出答案. 【详解】 解:∵点A(a,2019)与点是关于y轴的对称点, ∴a=-2020,b=2019, ∴a+b=-1. 故答案为: 解析:-1 【分析】 直接利用关于y轴对称点的性质得出a,b的值进而得出答案. 【详解】 解:∵点A(a,2019)与点是关于y轴的对称点, ∴a=-2020,b=2019, ∴a+b=-1. 故答案为:-1. 【点睛】 本题考查关于y轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系. 十一、填空题 11.【分析】 设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E 解析: 【分析】 设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E的坐标. 【详解】 解:设D(x,y), 点在第一象限的角平分线上, , ,, 设直线AB的解析式为:,把,代入得: k=2, , , 把代入,得b=-1, , 点D在上, , 设直线AD的解析式为:, 可得, , , 当x=0时,, , 故答案为: 【点睛】 此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键. 十二、填空题 12.115° 【分析】 要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解. 【详解】 解:∵AB∥CD 解析:115° 【分析】 要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解. 【详解】 解:∵AB∥CD,∠C=50°, ∴∠C=∠AOC=50°, ∵OE平分∠AOC, ∴25°, ∵OE⊥OF, ∴∠EOF=90°, ∴∠AOF=∠AOE+∠EOF=115°, 故答案为:115°. 【点睛】 本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解. 十三、填空题 13.55° 【分析】 直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论. 【详解】 解:∵∠AOB′=70°, 解析:55° 【分析】 直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论. 【详解】 解:∵∠AOB′=70°,∠AOB′+∠BOG+∠B′OG=180°, ∴∠BOG+∠B′OG=180°-70°=110°. ∵∠B′OG由∠BOG翻折而成, ∴∠BOG=∠B′OG, ∴∠BOG= =55°. ∵AB∥CD, ∴∠OGD=∠BOG=55°. 故答案为:55°. 【点睛】 本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键. 十四、填空题 14.﹣2或﹣1或0或1或2. 【分析】 有三种情况: ①当时,[x]=-1,(x)=0,[x)=-1或0, ∴[x]+(x)+[x)=-2或-1; ②当时,[x]=0,(x)=0,[x)=0, ∴[x] 解析:﹣2或﹣1或0或1或2. 【分析】 有三种情况: ①当时,[x]=-1,(x)=0,[x)=-1或0, ∴[x]+(x)+[x)=-2或-1; ②当时,[x]=0,(x)=0,[x)=0, ∴[x]+(x)+[x)=0; ③当时,[x]=0,(x)=1,[x)=0或1, ∴[x]+(x)+[x)=1或2; 综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2. 故答案为-2或﹣1或0或1或2. 点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键. 【详解】 请在此输入详解! 十五、填空题 15.或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3 解析:或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2, 当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去), 综上,x的值为2或, 故答案为2或. 【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 十六、填空题 16.【分析】 根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(2,4), ∴A 解析: 【分析】 根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(2,4), ∴A2(−3,3),A3(−2,−2),A4(3,−1),A5(2,4), …, 依此类推,每4个点为一个循环组依次循环, ∵2021÷4=505•••1, ∴点A2021的坐标与A1的坐标相同,为(2,4). 故答案为:. 【点睛】 本题是对点的变化规律的考查,读懂题目信息,理解“和谐点”的定义并求出每4个点为一个循环组依次循环是解题的关键. 十七、解答题 17.(1);(2) 【分析】 (1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可; (2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可. 【详解】 解: 解析:(1);(2) 【分析】 (1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可; (2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可. 【详解】 解:(1)原式==; (2)原式=. 【点睛】 本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键. 十八、解答题 18.(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 解析:(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 【点睛】 本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法. 十九、解答题 19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70 【分析】 根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等 解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70 【分析】 根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可. 【详解】 解:∵EF∥AD, ∴∠2=∠3(两直线平行,同位角相等). 又∵∠1=∠2, ∴∠1=∠3, ∴AB∥DG(内错角相等,两直线平行). ∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补). ∵∠AGD=110°, ∴∠BAC=70度. 故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70. 【点睛】 本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键. 二十、解答题 20.(1),;(2)见解析;(3). 【分析】 (1)根据原点的位置确定点的坐标即可; (2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M(m,n)向上平移3个单位,再向右平移 解析:(1),;(2)见解析;(3). 【分析】 (1)根据原点的位置确定点的坐标即可; (2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到的坐标. 【详解】 (1)根据原点的位置确定点的坐标, 则,; (2)将三点向上平移3个单位,再向右平移2个单位得到, , , 在图中描出点,连接,DA¢B¢C¢即为所求. (3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3 . 【点睛】 本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键. 二十一、解答题 21.(1);(2). 【分析】 (1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可; (2)先估算,得到其整数部分,则y为小数部分,分别求出x,y 解析:(1);(2). 【分析】 (1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可; (2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算. 【详解】 (1)依题意得2a-1=9,11a+b-1=64, 解得a=5,b=10, ∴b-a=5,其算术平方根为, ∴m= (2)x+y=10+ ∵2<<3, ∴12<10+<13, ∴x=12,y=10+-12=-2 ∴x-y=12-(-2)= 【点睛】 此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算. 二十二、解答题 22.不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为, 解析:不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为,故边长为 设长方形宽为,则长为 长方形面积 ∴, 解得(负值舍去) 长为 即长方形的长大于正方形的边长, 所以不能裁出符合要求的长方形纸片 【点睛】 本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键. 二十三、解答题 23.(1)120°;(2)90°-x°;(3)不变,;(4)45° 【分析】 (1)由平行线的性质:两直线平行同旁内角互补可得; (2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ 解析:(1)120°;(2)90°-x°;(3)不变,;(4)45° 【分析】 (1)由平行线的性质:两直线平行同旁内角互补可得; (2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°; (3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1; (4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案. 【详解】 解:(1)∵AM∥BN,∠A=60°, ∴∠A+∠ABN=180°, ∴∠ABN=120°; (2)∵AM∥BN, ∴∠ABN+∠A=180°, ∴∠ABN=180°-x°, ∴∠ABP+∠PBN=180°-x°, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠CBP,∠PBN=2∠DBP, ∴2∠CBP+2∠DBP=180°-x°, ∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°; (3)不变,∠ADB:∠APB=. ∵AM∥BN, ∴∠APB=∠PBN,∠ADB=∠DBN, ∵BD平分∠PBN, ∴∠PBN=2∠DBN, ∴∠APB:∠ADB=2:1, ∴∠ADB:∠APB=; (4)∵AM∥BN, ∴∠ACB=∠CBN, 当∠ACB=∠ABD时,则有∠CBN=∠ABD, ∴∠ABC+∠CBD=∠CBD+∠DBN, ∴∠ABC=∠DBN, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠ABC,∠PBN=2∠DBN, ∴∠ABP=∠PBN=2∠DBN=∠ABN, ∵AM∥BN, ∴∠A+∠ABN=180°, ∴∠A+∠ABN=90°, ∴∠A+2∠DBN=90°, ∴∠A+∠DBN=(∠A+2∠DBN)=45°. 【点睛】 本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键. 二十四、解答题 24.(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过 解析:(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过点作, ∵, ∴, ∴,, 又∵, ∴; (2)如图2, 由(1)可得:,, ∵的平分线与的平分线相交于点, ∴ , ∴; (3)由(2)可得:,, ∵,, ∴ , ∴; 【点睛】 考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键. 二十五、解答题 25.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角 解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案. 【详解】 (1)证明:∵在中,, ∴, ∵BD是的角平分线, ∴, ∴, ∴是“准互余三角形”; (2)①∵, ∴, ∴是“准互余三角形”, 故①正确; ②∵, , ∴, ∴不是“准互余三角形”, 故②错误; ③设三角形的三个内角分别为,且, ∵三角形是“准互余三角形”, ∴或, ∴, ∴, ∴“准互余三角形”一定是钝角三角形, 故③正确; 综上所述,①③正确, 故答案为:①③; (3)∠APB的度数是10°或20°或40°或110°; 如图①, 当2∠A+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A=20°, ∴∠APB=110°; 如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, ∴∠APB=40°; 如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠APB=20°; 如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, 所以∠A=40°, 所以∠APB=10°; 综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”. 【点睛】 本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 期末 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文