人教版七年级数学下册期末考试试卷(及解析).doc
《人教版七年级数学下册期末考试试卷(及解析).doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册期末考试试卷(及解析).doc(23页珍藏版)》请在咨信网上搜索。
人教版七年级数学下册期末考试试卷(及解析) 一、选择题 1.的平方根是() A.9 B.9和﹣9 C.3 D.3和﹣3 2.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A. B. C. D. 3.如果在第三象限,那么点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( ) A.1个 B.2个 C.3个 D.4个 5.如图, ,若,,,则下列说法正确的是( ) A. B. C. D. 6.下列计算正确的是( ) A.=±2 B.(﹣3)0=0 C.(﹣2a2b)2=4a4b2 D.2a3÷(﹣2a)=﹣a3 7.如图,AB//CD,AD⊥AC,∠ACD=53°,则∠BAD的度数为( ) A.53° B.47° C.43° D.37° 8.如图,在平面直角坐标系中,点A1,A2,A3,A4,A5,A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…按此规律排列,则点A2021的坐标是( ) A. B. C. D. 九、填空题 9.如果,的平方根是,则__________. 十、填空题 10.若与关于轴对称,则______. 十一、填空题 11.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____. 十二、填空题 12.如图,将三角板与两边平行的直尺()贴在一起,使三角板的直角顶点C()在直尺的一边上,若,则的度数等于________. 十三、填空题 13.将一条长方形纸带按如图方式折叠,若,则的度数为________°. 十四、填空题 14.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是________. 十五、填空题 15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____. 十六、填空题 16.如图,在平面直角坐标系中:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→……的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是________. 十七、解答题 17.计算下列各题: (1); (2)-×; (3)-++. 十八、解答题 18.求下列各式中的x值. (1) (2) 十九、解答题 19.已知:,,垂足分别为B,D,, 求证:, 请你将证明过程补充完整. 证明:∵,,垂足分别为B,D(已知). ∴(垂直定义). ∴______________∥______________() ∴______________() 又∵(已知) ∴∠2=(), ∴______________∥______________() ∴() 二十、解答题 20.如图,在平面直角坐标系中,DABC的顶点 C的坐标为(1,3).点A、B分别在格点上. (1)直接写出A、B两点的坐标; (2)若把DABC向上平移3个单位,再向右平移2个单位得DA¢B¢C¢,画出DA¢B¢C¢; (3)若DABC内有一点 M(m,n),按照(2)的平移规律直接写出平移后点M的对应点 M¢的坐标. 二十一、解答题 21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,,于是可用来表示的小数部分.请解答下列问题: (1)的整数部分是________,小数部分是________. (2)如果的小数部分为,的整数部分为,求的值. (3)已知:,其中是整数,且,求的相反数. 二十二、解答题 22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片. (1)请帮小丽设计一种可行的裁剪方案; (2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由. 二十三、解答题 23.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH. (1)如图1,求证:GFEH; (2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明. 二十四、解答题 24.如图1,D是△ABC延长线上的一点,CEAB. (1)求证:∠ACD=∠A+∠B; (2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数. (3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN与∠ACB的关系,说明理由. 二十五、解答题 25.模型与应用. (模型) (1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°. (应用) (2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 . 如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 . (3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°. 在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示) 【参考答案】 一、选择题 1.D 解析:D 【分析】 先化简,再根据平方根的地红衣求解. 【详解】 解:∵=9, ∴的平方根是, 故选D. 【点睛】 本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作. 2.B 【分析】 根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可. 【详解】 A,C,D选项中的图案不能通过平移得到, B选项中的图案通过平移后可以得到. 故选B. 解析:B 【分析】 根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可. 【详解】 A,C,D选项中的图案不能通过平移得到, B选项中的图案通过平移后可以得到. 故选B. 【点睛】 本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键. 3.B 【分析】 根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解. 【详解】 解:∵点P(a,b)在第三象限, ∴a<0,b<0, ∴a+b<0,ab>0, ∴点Q(a+b,ab)在第二象限. 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据几何初步知识对命题逐个判断即可. 【详解】 解:①对顶角相等,为真命题; ②内错角相等,只有两直线平行时,内错角才相等,此为假命题; ③平行于同一条直线的两条直线互相平行,为真命题; ④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题; ⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题; ①③命题正确. 故选:B. 【点睛】 本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键. 5.D 【分析】 根据平行线的性质进行求解即可得到答案. 【详解】 解:∵BE∥CD ∴∠ 2+∠C=180°,∠ 3+∠D=180° ∵∠ 2=50°,∠ 3=120° ∴∠C=130°,∠D=60° 又∵BE∥AF,∠ 1=40° ∴∠A=180°-∠ 1=140°,∠F=∠ 3=120° 故选D. 【点睛】 本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 6.C 【分析】 根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案. 【详解】 A.原式=﹣2,故A错误; B.原式=1,故B错误; C、(﹣2a2b)2=4a4b2,计算正确; D、原式=﹣a2,故D错误; 故选C. 【点睛】 本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 7.D 【分析】 因为AD⊥AC,所以∠CAD=90°.由AB//CD,得∠BAC=180°﹣∠ACD,进而求得∠BAD的度数. 【详解】 解:∵AB//CD, ∴∠ACD+∠BAC=180°. ∴∠CAB=180°﹣∠ACD=180°﹣53°=127°. 又∵AD⊥AC, ∴∠CAD=90°. ∴∠BAD=∠CAB﹣∠CAD=127°﹣90°=37°. 故选:D. 【点睛】 本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键. 8.A 【分析】 根据图象可得移动4次图象完成一个循环,找规律得出的坐标,再确定的坐标,从而可得出点A2021的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5 解析:A 【分析】 根据图象可得移动4次图象完成一个循环,找规律得出的坐标,再确定的坐标,从而可得出点A2021的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…, ∴的横坐标为2,纵坐标为0, 的横坐标为,纵坐标为0, …… 以此类推, 的横坐标为,纵坐标为0, ∵, ∴的坐标为, ∴的坐标为 故选:A. 【点睛】 本题考查了点的坐标变化规律,解答本题的关键是仔细观察图形,得到点的坐标变化规律. 九、填空题 9.-4 【分析】 根据题意先求出 ,再代入,即可. 【详解】 解:∵的平方根是, ∴ , ∴ , ∴, 故答案为: 【点睛】 本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值. 解析:-4 【分析】 根据题意先求出 ,再代入,即可. 【详解】 解:∵的平方根是, ∴ , ∴ , ∴, 故答案为: 【点睛】 本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值. 十、填空题 10.【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解】 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐 解析: 【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解】 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y轴对称,那么这两个点的横坐标互为相反数,纵坐标相等. 十一、填空题 11.4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 解析:4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 十二、填空题 12.35 【分析】 根据平行线的性质和直角三角形两锐角互余即可求得 【详解】 故答案为:35°. 【点睛】 本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键. 解析:35 【分析】 根据平行线的性质和直角三角形两锐角互余即可求得 【详解】 故答案为:35°. 【点睛】 本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键. 十三、填空题 13.36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 解析:36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 故答案为:36 【点睛】 本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十四、填空题 14.【分析】 根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵, ∴n和q互为相反数,O在线段NQ的中点处, ∴绝对值最大的是点P表示的数. 故 解析: 【分析】 根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵, ∴n和q互为相反数,O在线段NQ的中点处, ∴绝对值最大的是点P表示的数. 故答案为:. 【点睛】 本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答. 十五、填空题 15.(0,4)或(0,-4). 【分析】 设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答. 【详解】 解:设△ABC边AB上的高为h, ∵A(1,0), 解析:(0,4)或(0,-4). 【分析】 设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答. 【详解】 解:设△ABC边AB上的高为h, ∵A(1,0),B(2,0), ∴AB=2-1=1, ∴△ABC的面积=×1•h=2, 解得h=4, 点C在y轴正半轴时,点C为(0,4), 点C在y轴负半轴时,点C为(0,-4), 所以,点C的坐标为(0,4)或(0,-4). 故答案为:(0,4)或(0,-4). 【点睛】 本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键. 十六、填空题 16.【分析】 先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题. 【详解】 解:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3), 四边形ABCD的周长为2+4+2+4= 解析: 【分析】 先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题. 【详解】 解:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3), 四边形ABCD的周长为2+4+2+4=12, 细线另一端所在位置的点在B点的下方3个单位的位置,即点的坐标 故答案为:. 【点睛】 本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型. 十七、解答题 17.(1)5;(2)-2;(3)2 【解析】 【分析】 根据实数的性质进行化简,再求值. 【详解】 解:(1)==5; (2)-× =-×4=-2; (3)-++=-6+5+3=2. 【点睛】 此题主要 解析:(1)5;(2)-2;(3)2 【解析】 【分析】 根据实数的性质进行化简,再求值. 【详解】 解:(1)==5; (2)-× =-×4=-2; (3)-++=-6+5+3=2. 【点睛】 此题主要考查实数的计算,解题的关键是熟知实数的性质. 十八、解答题 18.(1);(2)x=5. 【详解】 分析:(1)先移项,然后再求平方根即可; (2)先求x-1立方根,再求x即可. 详解:(1),∴; (2),∴x-1=4, ∴x=5. 点睛:本题考查了立方 解析:(1);(2)x=5. 【详解】 分析:(1)先移项,然后再求平方根即可; (2)先求x-1立方根,再求x即可. 详解:(1),∴; (2),∴x-1=4, ∴x=5. 点睛:本题考查了立方根和平方根的定义和性质,解题时牢记定义是关键,此题比较简单,易于掌握. 十九、解答题 19.答案见详解. 【分析】 根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案. 【详解】 证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己 解析:答案见详解. 【分析】 根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案. 【详解】 证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知), ∴∠ABC=∠ADE=90°(垂直定义), ∴BC∥DE(同位角相等,两直线平行), ∴∠1=∠EBC(两直线平行,内错角相等), 又∵∠l=∠2 (已知), ∴∠2=∠EBC(等量代换), ∴BE∥GF(同位角相等,两直线平行), ∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补). 【点睛】 本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 二十、解答题 20.(1),;(2)见解析;(3). 【分析】 (1)根据原点的位置确定点的坐标即可; (2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M(m,n)向上平移3个单位,再向右平移 解析:(1),;(2)见解析;(3). 【分析】 (1)根据原点的位置确定点的坐标即可; (2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到的坐标. 【详解】 (1)根据原点的位置确定点的坐标, 则,; (2)将三点向上平移3个单位,再向右平移2个单位得到, , , 在图中描出点,连接,DA¢B¢C¢即为所求. (3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3 . 【点睛】 本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键. 二十一、解答题 21.(1)4, −4;(2)1;(3)−12+; 【解析】 【分析】 (1)先估算出的范围,即可得出答案; (2)先估算出、 的范围,求出a、b的值,再代入求解即可; (3)先估算出的范围,求出x、y的 解析:(1)4, −4;(2)1;(3)−12+; 【解析】 【分析】 (1)先估算出的范围,即可得出答案; (2)先估算出、 的范围,求出a、b的值,再代入求解即可; (3)先估算出的范围,求出x、y的值,再代入求解即可. 【详解】 (1)∵4<<5, ∴的整数部分是4,小数部分是 −4, 故答案为:4, −4; (2)∵2<<3, ∴a=−2, ∵3<<4, ∴b=3, ∴a+b−=−2+3−=1; (3)∵1<3<4, ∴1<<2, ∴11<10+<12, ∵10+=x+y,其中x是整数,且0<y<1, ∴x=11,y=10+−11=−1, ∴x−y=11−(−1)=12−, ∴x−y的相反数是−12+; 【点睛】 此题考查估算无理数的大小,解题关键在于掌握估算方法. 二十二、解答题 22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴ 解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴a2=400 又∵a>0 ∴a=20 又∵要裁出的长方形面积为300cm2 ∴若以原正方形纸片的边长为长方形的长, 则长方形的宽为:300÷20=15(cm) ∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形 (2)∵长方形纸片的长宽之比为3:2 ∴设长方形纸片的长为3xcm,则宽为2xcm ∴6x 2=300 ∴x 2=50 又∵x>0 ∴x = ∴长方形纸片的长为 又∵>202 即:>20 ∴小丽不能用这块纸片裁出符合要求的纸片 二十三、解答题 23.(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详 解析:(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:, , , , ; (2)解:,理由如下: 如图2,过点作,过点作, , , ,, , 同理,, 平分,平分, ,, , 由(1)知,, , , , , . 【点睛】 此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 二十四、解答题 24.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析. 【分析】 (1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案; (2)首先根据角 解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析. 【分析】 (1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案; (2)首先根据角平分线的定义得出∠FCD=∠ECD,∠HAF=∠HAD,进而得出∠F=(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案; (3)根据平行线的性质及角平分线的定义得出,, ,再通过等量代换即可得出∠MQN=∠ACB. 【详解】 解:(1)∵CEAB, ∴∠ACE=∠A,∠ECD=∠B, ∵∠ACD=∠ACE+∠ECD, ∴∠ACD=∠A+∠B; (2)∵CF平分∠ECD,FA平分∠HAD, ∴∠FCD=∠ECD,∠HAF=∠HAD, ∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD), ∵CHAB, ∴∠ECD=∠B, ∵AHBC, ∴∠B+∠HAB=180°, ∵∠BAD=70°, , ∴∠F=(∠B+∠HAD)=55°; (3)∠MQN=∠ACB,理由如下: 平分, . 平分, . , . ∴∠MQN=∠MQG﹣∠NQG =180°﹣∠QGR﹣∠NQG =180°﹣(∠AQG+∠QGD) =180°﹣(180°﹣∠CQG+180°﹣∠QGC) =(∠CQG+∠QGC) =∠ACB. 【点睛】 本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键. 二十五、解答题 25.(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)° 【详解】 【模型】 (1)证明:过点E作EF∥CD, ∵AB∥CD, ∴EF∥AB, ∴∠1+∠MEF 解析:(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)° 【详解】 【模型】 (1)证明:过点E作EF∥CD, ∵AB∥CD, ∴EF∥AB, ∴∠1+∠MEF=180°, 同理∠2+∠NEF=180° ∴∠1+∠2+∠MEN=360° 【应用】 (2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°; 由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1), 故答案是:900° , 180°(n-1); (3)过点O作SR∥AB, ∵AB∥CD, ∴SR∥CD, ∴∠AM1O=∠M1OR 同理∠C MnO=∠MnOR ∴∠A M1O+∠CMnO=∠M1OR+∠MnOR, ∴∠A M1O+∠CMnO=∠M1OMn=m°, ∵M1O平分∠AM1M2, ∴∠AM1M2=2∠A M1O, 同理∠CMnMn-1=2∠CMnO, ∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°, 又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1), ∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)° 点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 期末考试 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文