2022年人教版七7年级下册数学期末考试试卷及答案.doc
《2022年人教版七7年级下册数学期末考试试卷及答案.doc》由会员分享,可在线阅读,更多相关《2022年人教版七7年级下册数学期末考试试卷及答案.doc(24页珍藏版)》请在咨信网上搜索。
2022年人教版七7年级下册数学期末考试试卷及答案 一、选择题 1.9的算术平方根是() A.81 B.3 C. D.4 2.下列运动中,属于平移的是( ) A.冷水加热过程中,小气泡上升成为大气泡 B.急刹车时汽车在地面上的滑动 C.随手抛出的彩球运动 D.随风飘动的风筝在空中的运动 3.若点在轴上,则点所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( ) A.1 B.2 C.3 D.4 5.如图,已知平分,平分,.下列结论正确的有( ) ①;②;③;④若,则. A.1个 B.2个 C.3个 D.4个 6.对于有理数a.b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当b<a时,min{a,b}=b.例如:min{1,﹣2}=﹣2,已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则a﹣b的立方根为( ) A.﹣1 B.1 C.﹣2 D.2 7.如图,将一张长方形纸片折叠,若,则的度数是( ) A.80° B.70° C.60° D.50° 8.如图,动点P从点出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为……第2021次碰到长方形边上的坐标为( ) A. B. C. D. 九、填空题 9.如果,的平方根是,则__________. 十、填空题 10.若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_____,b=______ 十一、填空题 11.如图,在中,作的角平分线与的外角的角平分线交于点;的角平分线与角平分线交于,如此下去,则__________. 十二、填空题 12.将一条长方形纸带按如图方式折叠,若,则的度数为________°. 十三、填空题 13.如图,把一张长方形纸片沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则____________,____________. 十四、填空题 14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第棵树种植在点处,其中,当时,,表示非负实数的整数部分,例如,. 按此方案,第6棵树种植点为________;第2011棵树种植点________. 十五、填空题 15.第二象限内的点满足=,=,则点的坐标是___. 十六、填空题 16.在平面直角坐标系中,已知点,,,且,下列结论:①轴,②将点A先向右平移5个单位,再向下平移个单位可得到点;③若点在直线上,则点的横坐标为3;④三角形的面积为,其中正确的结论是___________(填序号). 十七、解答题 17.计算. (1); (2). 十八、解答题 18.求下列各式中的值: (1); (2); (3). 十九、解答题 19.如图,已知∠AED=∠C,∠DEF=∠B,试说明∠EFG+∠BDG=180∘,请完成下列填空: ∵∠AED=∠C (_________) ∴ED∥BC(_________) ∴∠DEF=∠EHC (___________) ∵∠DEF=∠B(已知) ∴_______(等量代换) ∴BD∥EH(同位角相等,两直线平行) ∴∠BDG=∠DFE(两直线平行,内错角相等) ∵_________________(邻补角的意义) ∴∠EFG+∠BDG=180∘(___________) 二十、解答题 20.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题: (1)在坐标系内描出点A、B、C的位置; (2)求出以A、B、C三点为顶点的三角形的面积; (3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由. 二十一、解答题 21.已知某正数的两个不同的平方根是和;的立方根为;是的整数部分. 求的平方根. 二十二、解答题 22.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由. 二十三、解答题 23.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由). (2)如图②中,AB//CD,又能得出什么结论?请直接写出结论 . (3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为 . 二十四、解答题 24.如图1,在平面直角坐标系中,,且满足,过作轴于 (1)求三角形的面积. (2)发过作交轴于,且分别平分,如图2,若,求的度数. (3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由. 二十五、解答题 25.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1. (1)当∠A为70°时, ∵∠ACD-∠ABD=∠______ ∴∠ACD-∠ABD=______° ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=______°; (2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______; (3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______. (4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值. 【参考答案】 一、选择题 1.B 解析:B 【分析】 如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为. 【详解】 解:=3, 故选:B. 【点睛】 本题考查了算术平方根的定义,解题时注意算术平方根与平方根的区别. 2.B 【详解】 解:A、气泡在上升的过程中变大,不属于平移; B、急刹车时汽车在地面上的滑动属于平移; C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移; D、随风飘动的树叶在空中的运动, 解析:B 【详解】 解:A、气泡在上升的过程中变大,不属于平移; B、急刹车时汽车在地面上的滑动属于平移; C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移; D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转. 故选B. 【点睛】 此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.D 【分析】 根据点在轴上,求得,从而求得点的坐标,进而判断所在的象限. 【详解】 在轴上, , , 在第四象限, 故选D. 【点睛】 本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解. 4.B 【分析】 ①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可. 【详解】 解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,; ②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确; ③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误; ④平行于同一直线的两条直线平行,正确. 故选:B. 【点睛】 本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例. 5.C 【分析】 由三个已知条件可得AB∥CD,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC∥BD,可知③错误;由及平分,可得∠ACP=∠E,得AC∥BD,从而由平行线的性质易得,即④正确. 【详解】 ∵平分,平分 ∴∠ACD=2∠ACP=2∠2,∠CAB=2∠1=2∠CAP ∵ ∴∠ACD+∠CAB=2(∠1+∠2)=2×90゜=180゜ ∴ 故①正确 ∵ ∴∠ABE=∠CDB ∵∠CDB+∠CDF=180゜ ∴ 故②正确 由已知条件无法推出AC∥BD 故③错误 ∵,∠ACD=2∠ACP=2∠2 ∴∠ACP=∠E ∴AC∥BD ∴∠CAP=∠F ∵∠CAB=2∠1=2∠CAP ∴ 故④正确 故正确的序号为①②④ 故选:C. 【点睛】 本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键. 6.A 【分析】 根据a,b的范围即可求出a−b的立方根. 【详解】 解:根据题意得:a≤,b≥, ∵25<30<36, ∴5<<6, ∵a和b为两个连续正整数, ∴a=5,b=6, ∴a﹣b=﹣1, ∴﹣1的立方根是﹣1, 故选:A. 【点睛】 本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键. 7.A 【分析】 先由折叠的性质得出∠4=∠2=50°,再根据矩形对边平行可以得出答案. 【详解】 解:如图, 由折叠性质知∠4=∠2=50°, ∴∠3=180°-∠4-∠2=80°, ∵AB∥CD, ∴∠1=∠3=80°, 故选:A. 【点睛】 本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质. 8.A 【分析】 该题属于找规律题型,只要把运动周期找出来即可解决. 【详解】 由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3 解析:A 【分析】 该题属于找规律题型,只要把运动周期找出来即可解决. 【详解】 由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环, 2021÷6=366……5, 第2021次碰到长方形的边的点的坐标为(7,4), 故选:A. 【点睛】 本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答. 九、填空题 9.-4 【分析】 根据题意先求出 ,再代入,即可. 【详解】 解:∵的平方根是, ∴ , ∴ , ∴, 故答案为: 【点睛】 本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值. 解析:-4 【分析】 根据题意先求出 ,再代入,即可. 【详解】 解:∵的平方根是, ∴ , ∴ , ∴, 故答案为: 【点睛】 本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值. 十、填空题 10.a=3 b=-4 【分析】 先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值 【详解】 由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(- 解析:a=3 b=-4 【分析】 先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值 【详解】 由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4), 点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4), 则a=3,b=-4. 【点睛】 此题考查关于x轴、y轴对称的点的坐标,难度不大 十一、填空题 11.【分析】 根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可. 【详解】 解:设BC延长与点D, ∵, 的角平分线与的外角的角平分线交于点, ∴ , 同 解析: 【分析】 根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可. 【详解】 解:设BC延长与点D, ∵, 的角平分线与的外角的角平分线交于点, ∴ , 同理可得, , ∴, ∵, ∴, 故答案为:. 【点睛】 本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键. 十二、填空题 12.36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 解析:36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 故答案为:36 【点睛】 本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十三、填空题 13.68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, 解析:68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, ∴, ∵,, ∴(两直线平行,内错角相等), ∴, ∴, 又∵, ∴, ∴. 综上,. 故答案为:68°;112°. 【点睛】 本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键. 十四、填空题 14.403 【解析】 当k=6时,x6=T(1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达 解析:403 【解析】 当k=6时,x6=T(1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达式并写出用T表示出的表达式是解题的关键. 十五、填空题 15.(-9, 2) 【分析】 点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标. 【详解】 ∵点在第二象限, ∴,, 又∵,, ∴,, ∴点的坐标是. 【点睛】 本题主要考查 解析:(-9, 2) 【分析】 点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标. 【详解】 ∵点在第二象限, ∴,, 又∵,, ∴,, ∴点的坐标是. 【点睛】 本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键. 十六、填空题 16.①③④ 【分析】 ①两点纵坐标相同,得到 AB //x轴,即可判断; ②根据平移规律求得平移后的点的坐标,即可判断; ③根据两点的坐标特征可知直线BCx轴,即可判断; ④求得三角形的面积,即可判断. 解析:①③④ 【分析】 ①两点纵坐标相同,得到 AB //x轴,即可判断; ②根据平移规律求得平移后的点的坐标,即可判断; ③根据两点的坐标特征可知直线BCx轴,即可判断; ④求得三角形的面积,即可判断. 【详解】 解:A(-2,4),B(3,4),它们的纵坐标相同, AB //x轴, 故①正确; 将点A 先向右平移 5 个单位,再向下平移m个单位可得到点(3,4-m), 故②错误; B(3,4),C(3,m),它们的横坐标相同, BC x轴, 点 D 在直线BC上, 点 D的横坐标为 3, 故③正确; 点A(-2,4),B(3, 4),C(3,m),且m<4, AB =5,C 点到 AB 的距离为(4-m), 三角形 ABC 的面积为, 故④正确; 故答案为:①③④. 【点睛】 本题考查了平行线的判定,坐标和图形变化,平移以及点的坐标特征,明确线段的位置和大小是解题的关键. 十七、解答题 17.(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数 解析:(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键. 十八、解答题 18.(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出 解析:(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出x的值. 【详解】 解:(1)x3=0.008, 则x=0.2; (2)x3-3= 则x3=3+ 故x3= 解得:x=; (3)(x-1)3=64 则x-1=4, 解得:x=5. 【点睛】 此题主要考查了立方根,正确把握立方根的定义是解题关键. 十九、解答题 19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换 【分析】 根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠ 解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换 【分析】 根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠DEF=∠EHC,再运用等量代换得到∠EHC =∠B,最后推出BD∥EH,∠BDG=∠DFE,再利用邻补角的意义推出结论,据此回答问题. 【详解】 解:∵∠AED=∠C (已知) ∴ED∥BC(同位角相等,两直线平行) ∴∠DEF=∠EHC (两直线平行,内错角相等) ∵∠DEF=∠B(已知) ∴∠EHC =∠B (等量代换) ∴BD∥EH(同位角相等,两直线平行) ∴∠BDG=∠DFE(两直线平行,内错角相等) ∵∠DFE+∠EFG =180∘(邻补角的意义) ∴∠EFG+∠BDG=180∘(等量代换). 【点睛】 本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键. 二十、解答题 20.(1)见解析;(2)S△ABC=5;(3)存在,P点的坐标为(0,5)或(0,﹣3). 【分析】 (1)根据点的坐标,直接描点; (2)根据点的坐标可知,ABx轴,且AB=3﹣(﹣2)=5,点C到线 解析:(1)见解析;(2)S△ABC=5;(3)存在,P点的坐标为(0,5)或(0,﹣3). 【分析】 (1)根据点的坐标,直接描点; (2)根据点的坐标可知,ABx轴,且AB=3﹣(﹣2)=5,点C到线段AB的距离3﹣1=2,根据三角形面积公式求解; (3)因为AB=5,要求ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个. 【详解】 解:(1)描点如图; (2)依题意,得ABx轴,且AB=3﹣(﹣2)=5, ∴S△ABC=×5×2=5; (3)存在; ∵AB=5,S△ABP=10, ∴P点到AB的距离为4, 又点P在y轴上, ∴P点的坐标为(0,5)或(0,﹣3). 【点睛】 本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积. 二十一、解答题 21.【分析】 由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案. 【详解】 解:某正数的两个平方根分别是和, , 又的立方根为, , , 又是的整数部分, ; 当,,时, 解析: 【分析】 由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案. 【详解】 解:某正数的两个平方根分别是和, , 又的立方根为, , , 又是的整数部分, ; 当,,时, , 的平方根是. 【点睛】 本题考查的是平方根,立方根的含义,无理数的估算,整数部分的含义,掌握以上知识是解题的关键. 二十二、解答题 22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸 解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸片的面积为()2+()2=36(cm2), 所以大正方形的边长为6cm, 设截出的长方形的长为3b cm,宽为2b cm, 则6b2=30, 所以b=(取正值), 所以3b=3=>, 所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片. 【点睛】 本题考查了算术平方根,理解算术平方根的意义是正确解答的关键. 二十三、解答题 23.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】 (1)过点E作EF//AB,利用平行线的性质则可得出 解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】 (1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD; (2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D; (3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论. 【详解】 解:(1)过点E作EF//AB, ∴∠B=∠BEF. ∵∠BEF+∠FED=∠BED, ∴∠B+∠FED=∠BED. ∵∠B+∠D=∠E(已知), ∴∠FED=∠D. ∴CD//EF(内错角相等,两直线平行). ∴AB//CD. (2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB, ∵AB∥CD, ∴AB∥EM∥FN∥GH∥CD, ∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D, ∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D, 即∠E+∠G=∠B+∠F+∠D. 由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等, ∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. 故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. (3)如图,过点M作EF∥AB,过点N作GH∥AB, ∴∠APM+∠PME=180°, ∵EF∥AB,GH∥AB, ∴EF∥GH, ∴∠EMN+∠MNG=180°, ∴∠1+∠2+∠MNG =180°×2, 依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°. 故答案为:(n-1)•180°. 【点睛】 本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形. 二十四、解答题 24.(1)4;(2)45°;(3)P(0,-1)或(0,3) 【分析】 (1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出 解析:(1)4;(2)45°;(3)P(0,-1)或(0,3) 【分析】 (1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4; (2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°; (3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算. 【详解】 解:(1)由题意知:a=−b,a−b+4=0, 解得:a=−2,b=2, ∴ A(−2,0),B(2,0),C(2,2), ∴S△ABC=; (2)∵CB∥y轴,BD∥AC, ∴∠CAB=∠ABD, ∴∠3+∠4+∠5+∠6=90°, 过E作EF∥AC, ∵BD∥AC, ∴BD∥AC∥EF, ∵AE,DE分别平分∠CAB,∠ODB, ∴∠3=∠4=∠1,∠5=∠6=∠2, ∴∠AED=∠1+∠2=×90°=45°; (3)存在.理由如下: 设P点坐标为(0,t),直线AC的解析式为y=kx+b, 把A(−2,0)、C(2,2)代入得: ,解得, ∴直线AC的解析式为y=x+1, ∴G点坐标为(0,1), ∴S△PAC=S△APG+S△CPG=|t−1|•2+|t−1|•2=4,解得t=3或−1, ∴P点坐标为(0,3)或(0,−1). 【点睛】 本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等. 二十五、解答题 25.(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD 解析:(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解; (2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律; (3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论; (4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系. 【详解】 解:(1)当∠A为70°时, ∵∠ACD-∠ABD=∠A, ∴∠ACD-∠ABD=70°, ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线, ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=35°; 故答案为:A,70,35; (2)∵A1B、A1C分别平分∠ABC和∠ACD, ∴∠ACD=2∠A1CD,∠ABC=2∠A1BC, 而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC, ∴∠BAC=2∠A1=80°, ∴∠A1=40°, 同理可得∠A1=2∠A2, 即∠BAC=22∠A2=80°, ∴∠A2=20°, ∴∠A=2n∠An, 故答案为:∠A=2∠An. (3)∵∠ABC+∠DCB=360°-(∠A+∠D), ∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F, ∴360°-(α+β)=180°-2∠F, 2∠F=∠A+∠D-180°, ∴∠F=(∠A+∠D)-90°, ∵∠A+∠D=230°, ∴∠F=25°; 故答案为:25°. (4)①∠Q+∠A1的值为定值正确. ∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1=∠A1CD-∠A1BD= ∠BAC, ∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线, ∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC, ∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC, ∴∠Q+∠A1=180°. 【点睛】 本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版七 年级 下册 数学 期末考试 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文