2019年广东省深圳市福田区中考数学模拟试卷(4月份).doc
《2019年广东省深圳市福田区中考数学模拟试卷(4月份).doc》由会员分享,可在线阅读,更多相关《2019年广东省深圳市福田区中考数学模拟试卷(4月份).doc(30页珍藏版)》请在咨信网上搜索。
2019年广东省深圳市福田区中考数学模拟试卷(4月份) 一.选择题(本大题共12小题,每小题3分,共36分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答顺卡相应位置上) 1.(3分)给出四个数0,﹣1,﹣2,,其中最小的是( ) A.﹣2 B.﹣1 C.0 D. 2.(3分)马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是( ) A.a8÷a4=a2 B.a3•a4=a12 C.=±2 D.2x3•x2=2x5 3.(3分)下列图形中,既是轴对称又是中心对称图形的是( ) A. B. C. D. 4.(3分)由吴京特别出演的国产科幻大片《流浪地球》自今年1月放映以来实现票房与口碑双丰收,票房有望突破50亿元,其中50亿元可用科学记数法表示为( )元. A.0.5×1010 B.5×108 C.5×109 D.5×1010 5.(3分)如图,直线a∥b.将一直角三角形的直角顶点置于直线b上,若∠l=28°,则∠2的度数是( ) A.108° B.118° C.128° D.152° 6.(3分)下列立体图形中,主视图是三角形的是( ) A. B. C. D. 7.(3分)下表来源市气象局2019年3月7日发布的全市六个监测点监测到空气质量指数(AQ)数据 监测点 福田 罗田 盐田 大鹏 南山 宝安 AQI 59 59 17 13 46 38 质量 良 良 优 优 优 优 上述(AQI)数据中,中位数是( ) A.15 B.42 C.46 D.59 8.(3分)在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为( ) A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74 C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74 9.(3分)定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cosB•sadA=( ) A.1 B. C. D. 10.(3分)如图仔细观察其中的两个尺规作图痕迹,两直线相交于点O,则下列说法中不正确的是( ) A.EF是△ABC的中位线 B.∠BAC+∠EOF=180° C.O是△ABC的内心 D.△AEF的面积等于△ABC的面积的 11.(3分)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是( ) A. B. C. D. 12.(3分)如图,正方形ABCD中,以BC为边向正方形内部作等边△BCE.连接AE.DE,连接BD交CE于F,下列结论:①∠AED=150°②△DEF~△BAE;③tan∠ECD=④△BEC的面积:△BFC的面积(+1):2,其中正确的结论有( )个. A.4 B.3 C.2 D.1 二.填空题(本大题共4小题,每小题3分,共12分,不需要写出解答过程.请把答案直接填写在答题卡相应位置上) 13.(3分)已知a﹣2b=10,则代数式a2﹣4ab+4b2的值为 . 14.(3分)深圳市去年中考首次对九年级学生进行了物理,化学实验操作考试,其中化学实验操作考试有3个考题[分别记为A、B、C供学生选择,每个学生都可以从3个考题中随机抽取一个考题进行操作,如果每一个考题被抽到的机会均等,那么甲乙两个学生抽到的考题都是A的概率是 . 15.(3分)如图在平面直角坐标系中,周长为12的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上.点B,在反比例函数y=位于第一象限的图象上.则k的值为 . 16.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CB于点F.交CD于点E.若AC=6,sinB=,则DE的长为 . 三、解答题(本题共7小题,其中第17题5分,第18题7分,第19题6分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) 17.(5分)计算:﹣2cos60°+()﹣1﹣|﹣5|. 18.(7分)先化简,再求值:(1+)÷,其中x是不等式组的整数解. 19.(6分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示: 请依据统计结果回答下列问题: (1)本次调查中,一共调查了 位好友. (2)已知A类好友人数是D类好友人数的5倍. ①请补全条形图; ②扇形图中,“A”对应扇形的圆心角为 度. ③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步? 20.(8分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE. (1)求证:四边形ABCD是菱形; (2)若AB=.OE=2,求线段CE的长. 21.(8分)如图所示,要在某东西走向的A、B两地之间修一条笔直的公路,在公路起点A处测得某农户C在A的北偏东68°方向上.在公路终点B处测得该农户c在点B的北偏西45°方向上.已知A、B两地相距2400米. (1)求农户C到公路AB的距离;(参考数据:sin22°≈,cos22°≈,tan22°≈) (2)现在由于任务紧急,要使该修路工程比原计划提前4天完成,需将该工程原定的工作效率提高20%,求原计划该工程队毎天修路多少米? 22.(9分)如图,在R△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点.经过点A,D两点的⊙O分別交AB,AC于点F、E, (1)求证:BC是⊙O的切线; (2)已知AD=2,试求AB•AE的值; (3)在(2)的条件下,若∠B=30°,求图中阴影部分的面积,(结果保留π和根号) 23.(9分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C (1)填空:b= ,c= ,点C的坐标为 . (2)如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值. (3)如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积. 2019年广东省深圳市福田区中考数学模拟试卷(4月份) 参考答案与试题解析 一.选择题(本大题共12小题,每小题3分,共36分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答顺卡相应位置上) 1.(3分)给出四个数0,﹣1,﹣2,,其中最小的是( ) A.﹣2 B.﹣1 C.0 D. 【分析】根据有理数大小比较的法则,正数大于0,负数小于0,对于﹣1与﹣2通过绝对值比较即可. 【解答】解:∵|﹣2|=2,|﹣1|=1 而1<2,∴﹣1>﹣2 ∴>0>﹣1>﹣2 ∴四个数中最小的是﹣2. 故选:A. 【点评】本题考查的是有理数的大小比较,正数大于0,负数小于0,重点是要会利用绝对值对两个负数进行大小比较. 2.(3分)马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是( ) A.a8÷a4=a2 B.a3•a4=a12 C.=±2 D.2x3•x2=2x5 【分析】直接利用同底数幂的除法运算法则以及单项式乘以单项式运算法则求出答案. 【解答】解:A、a8÷a4=a4,故此选项错误; B、a3•a4=a7,故此选项错误; C、=2,故此选项错误; D、2x3•x2=2x5,正确. 故选:D. 【点评】此题主要考查了同底数幂的除法运算法则以及单项式乘以单项式,正确掌握运算法则是解题关键. 3.(3分)下列图形中,既是轴对称又是中心对称图形的是( ) A. B. C. D. 【分析】根据轴对称图形与中心对称图形的概念判断即可. 【解答】解:A、不是轴对称图形,是中心对称图形; B、是轴对称图形,是中心对称图形; C、是轴对称图形,不是中心对称图形; D、不是轴对称图形,不是中心对称图形. 故选:B. 【点评】本题考查的是中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 4.(3分)由吴京特别出演的国产科幻大片《流浪地球》自今年1月放映以来实现票房与口碑双丰收,票房有望突破50亿元,其中50亿元可用科学记数法表示为( )元. A.0.5×1010 B.5×108 C.5×109 D.5×1010 【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可. 【解答】解:50亿元=5×109元. 故选:C. 【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键. 5.(3分)如图,直线a∥b.将一直角三角形的直角顶点置于直线b上,若∠l=28°,则∠2的度数是( ) A.108° B.118° C.128° D.152° 【分析】依据AB∥CD,即可得出∠2=∠ABC=∠1+∠CBE. 【解答】解:如图,∵AB∥CD, ∴∠2=∠ABC=∠1+∠CBE=28°+90°=118°, 故选:B. 【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等. 6.(3分)下列立体图形中,主视图是三角形的是( ) A. B. C. D. 【分析】根据从正面看得到的图形是主视图,可得图形的主视图. 【解答】解:A主视图是矩形,C主视图是正方形,D主视图是圆,故A、C、D不符合题意; B、主视图是三角形,故B正确; 故选:B. 【点评】本题考查了简单几何体的三视图,圆锥的主视图是三角形. 7.(3分)下表来源市气象局2019年3月7日发布的全市六个监测点监测到空气质量指数(AQ)数据 监测点 福田 罗田 盐田 大鹏 南山 宝安 AQI 59 59 17 13 46 38 质量 良 良 优 优 优 优 上述(AQI)数据中,中位数是( ) A.15 B.42 C.46 D.59 【分析】先把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,从而可得答案. 【解答】解:把这些数从小到大排列为:13,17,38,46,59,59,则这组数据的中位数是=42; 故选:B. 【点评】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错. 8.(3分)在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为( ) A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74 C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74 【分析】设曼城队一共胜了x场,则平了(30﹣x﹣4)场,根据总积分=3×获胜场数+1×踢平场数,即可得出关于x的一元一次方程,此题得解. 【解答】解:设曼城队一共胜了x场,则平了(30﹣x﹣4)场, 依题意,得:3x+(30﹣x﹣4)=74, 即3x+(26﹣x)=74. 故选:C. 【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 9.(3分)定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cosB•sadA=( ) A.1 B. C. D. 【分析】根据题意可以求得∠B的度数,然后根据锐角三角函数可以表示出AB和BC的值,从而可以求得sadA和cosA的值,进而求得cosB•sadA的值. 【解答】解:∵在△ABC中,AB=AC,∠A=4∠B, ∴∠B=∠C, ∵∠A+∠B+∠C=180°, ∴6∠B=180°, 解得,∠B=30°, 作AD⊥BC于点D,设AD=a, 则AB=2a,BD=a, ∵BC=2BD, ∴BC=2a, ∴sadA=,cosB=, ∴cosB•sadA==, 故选:B. 【点评】本题考查新定义、解直角三角形、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答. 10.(3分)如图仔细观察其中的两个尺规作图痕迹,两直线相交于点O,则下列说法中不正确的是( ) A.EF是△ABC的中位线 B.∠BAC+∠EOF=180° C.O是△ABC的内心 D.△AEF的面积等于△ABC的面积的 【分析】观察图形可知,作的两条直线是AB、AC边的垂直平分线,由此可知EF是△ABC的中位线,进而可以进行判断. 【解答】解:∵所作的两条直线是AB、AC边的垂直平分线, ∴EF是△ABC的中位线,∠AEO=∠AFO=90°, ∴∠BAC+∠EOF=360°﹣90°﹣90°=180°, 故选项A、B都正确; ∵EF是△ABC的中位线, ∴EF是BC的一半,EF∥BC, ∴△AEF∽△ABC, ∴△AEF的面积等于△ABC的面积的四分之一 故选项D是正确的; 只有选项C是错误的,因为三角形的内心就是三角形三个内角角平分线的交点. 故选:C. 【点评】本题考查的是线段垂直平分线的作图、三角形中位线定理、相似三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 11.(3分)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是( ) A. B. C. D. 【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决. 【解答】解:由二次函数的图象可知, a<0,b<0, 当x=﹣1时,y=a﹣b<0, ∴y=(a﹣b)x+b的图象在第二、三、四象限, 故选:D. 【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答. 12.(3分)如图,正方形ABCD中,以BC为边向正方形内部作等边△BCE.连接AE.DE,连接BD交CE于F,下列结论:①∠AED=150°②△DEF~△BAE;③tan∠ECD=④△BEC的面积:△BFC的面积(+1):2,其中正确的结论有( )个. A.4 B.3 C.2 D.1 【分析】①利用正方形的性质,等边三角形的性质,等腰三角形的性质及三角形的内角和,周角求得判定即可 ②由①可得到∠ADE的度数,再利用正方形的性质即可得∠DEF=∠ABE,即可判定 ③可利用含30°的直角三角形的性质即可分别求出,再与tan∠ECD=tan30°作比较即可 ④两个三角形的底相同,由高的比进行判定即可 【解答】解: ∵△BEC为等边三角形 ∴∠EBC=∠BCE=∠ECB=60°,AB=EB=EC=BC=DC ∵四边形ABCD为正方形 ∴∠ABE=∠ECD=90°﹣60°=30° ∴在△ABE和△DCE中, AB=DC ∠ABE=∠ECD BE=EC ∴△ABE≌△DCE(SAS) ∴∠AEB=∠DEC==75° ∴∠AED=360°﹣60°﹣75°×2=150° 故①正确 由①知AE=ED ∴∠EAD=∠EDA=15° ∴∠EDF=45°﹣15°=30° ∴∠EDF=∠ABE 由①知∠AEB=∠DEC, ∴△DEF~△BAE 故②正确 过点F作FM⊥DC交于M,如图 设DM=x,则FM=x,DF=x ∵∠FCD=30° ∴MC=x 则在Rt△DBC中,BD= ∴BF=BD﹣DF= 则 ∵tan∠ECD=tan30°= ∴tan∠ECD= 故③正确 如图过点E作EH⊥BC交于H,过F作FG⊥BC交于G,得 由③知MC=,MC=FG ∴FG= ∵BC=DC=x ∴BH= ∵∠EBC=60° ∴EH= ∴==== 故④正确 故选:A. 【点评】此题主要考查了正方形的性质,等边三角形的性质,等腰三角形的性质及三角形的内角和,相似三角形,全等三角形的判定及含30°的直角三角形的性质. 二.填空题(本大题共4小题,每小题3分,共12分,不需要写出解答过程.请把答案直接填写在答题卡相应位置上) 13.(3分)已知a﹣2b=10,则代数式a2﹣4ab+4b2的值为 100 . 【分析】将代数式a2﹣4ab+4b2因式分解,然后根据a﹣2b=10,即可解答本题. 【解答】解:∵a﹣2b=10, ∴a2﹣4ab+4b2=(a﹣2b)2=102=100, 故答案为:100. 【点评】本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式因式分解,求出相应的式子的值. 14.(3分)深圳市去年中考首次对九年级学生进行了物理,化学实验操作考试,其中化学实验操作考试有3个考题[分别记为A、B、C供学生选择,每个学生都可以从3个考题中随机抽取一个考题进行操作,如果每一个考题被抽到的机会均等,那么甲乙两个学生抽到的考题都是A的概率是 . 【分析】画树状图列出所有等可能结果,找到符合条件的结果数,再根据概率公式计算可得. 【解答】解:画树状图如下: 由树状图知,共有9种等可能结果,其中甲乙两个学生抽到的考题都是A的有1种结果, 所以甲乙两个学生抽到的考题都是A的概率为, 故答案为:. 【点评】此题考查了画树状图求概率,用到的知识点是概率=所求情况数与总情况数之比. 15.(3分)如图在平面直角坐标系中,周长为12的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上.点B,在反比例函数y=位于第一象限的图象上.则k的值为 k= . 【分析】分析题意,要求k的值,结合图形只需求出点B的坐标即可;设y轴与BC的交点为M,连接OB,根据周长为12的正六边形ABCDEF的对称中心与原点O重合可知OB=2,BM=1,OMLBC; 接着,利用直角三角形勾股定理求出OM的值,结合点B在反比例函数位于第一象限的图象上,可以得到点B的坐标; 【解答】解:如图,连接OB ∵周长为12的正六边形ABCDEF的对称中心与原点O重合, ∴正六边形ABCDEF的边长为2, ∴OB=2,BM=1, ∵OMLBC, ∴OM=== •点B在反比例函数y=位于第一象限的图象上, 点B的坐标为(1,). 将点(1,)代入y=中,得k=. 故故答案为k= 【点评】本题考查了正多边形性质,锐角三角函数,反比例函数的性质,等边三角形的性质和判定的应用,关键是求出B的坐标. 16.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CB于点F.交CD于点E.若AC=6,sinB=,则DE的长为 . 【分析】先由AF平分∠CAB,CD⊥AB,过点E作EG垂直于AC,利用角平分线的性质定理得EG等于DE,易得Rt△AED全等于Rt△AEG以及∠DCA等于∠B,从而求得AD,AG,CG,然后在Rt△CEG中,由勾股定理求出EG,即为DE的长度. 【解答】解:过点E作EG⊥AC于点G, 又∵AF平分∠CAB,CD⊥AB,交CB于点F.交CD于点 E, ∴EG=ED, 在Rt△AED和Rt△AEG中, ∴Rt△AED≌Rt△AEG(HL), AG=AD. ∵∠ACB=90°,CD⊥AB, ∴∠B+∠BAC=∠DCA+∠BAC=90°, ∴∠DCA=∠B, ∵AC=6,sinB=, ∴sin∠DCA=sinB=, ∴=, ∴AD=, ∴DC===, ∴AG=AD=,CG=AC﹣AG=, ∴在Rt△CEG中,CE2=EG2+CG2, ∴(DC﹣ED)2=(DC﹣EG)2=EG2+CG2 ∴, ∴EG=, ∴DE=. 故答案为:. 【点评】本题综合运用了角平分线的性质定理,全等三角形判断,勾股定理等知识,难度较大. 三、解答题(本题共7小题,其中第17题5分,第18题7分,第19题6分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) 17.(5分)计算:﹣2cos60°+()﹣1﹣|﹣5|. 【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 【解答】解:﹣2cos60°+()﹣1﹣|﹣5| =3﹣2×+4﹣5 =3﹣1﹣1 =1 【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 18.(7分)先化简,再求值:(1+)÷,其中x是不等式组的整数解. 【分析】解不等式组,先求出满足不等式组的整数解.化简分式,把不等式组的整数解代入化简后的分式,求出其值. 【解答】解:不等式组 解①,得x<3; 解②,得x>1. ∴不等式组的解集为1<x<3. ∴不等式组的整数解为x=2. ∵(1+)÷ = =4(x﹣1). 当x=2时,原式=4×(2﹣1) =4. 【点评】本题考察了解一元一次不等式组、分式的化简求值.求出不等式组的整数解是解决本题的关键. 19.(6分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示: 请依据统计结果回答下列问题: (1)本次调查中,一共调查了 30 位好友. (2)已知A类好友人数是D类好友人数的5倍. ①请补全条形图; ②扇形图中,“A”对应扇形的圆心角为 120 度. ③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步? 【分析】(1)由B类别人数及其所占百分比可得总人数; (2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形; ②用360°乘以A类别人数所占比例可得; ③总人数乘以样本中C、D类别人数和所占比例. 【解答】解:(1)本次调查的好友人数为6÷20%=30人, 故答案为:30; (2)①设D类人数为a,则A类人数为5a, 根据题意,得:a+6+12+5a=30, 解得:a=2, 即A类人数为10、D类人数为2, 补全图形如下: ②扇形图中,“A”对应扇形的圆心角为360°×=120°, 故答案为:120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×=70人. 【点评】此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 20.(8分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE. (1)求证:四边形ABCD是菱形; (2)若AB=.OE=2,求线段CE的长. 【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论; (2)先判断出OE=OA=OC,再求出OB=1,根据相似三角形的性质即可得出结论. 【解答】解:(1)∵AB∥CD, ∴∠OAB=∠DCA, ∵AC为∠DAB的平分线, ∴∠OAB=∠DAC, ∴∠DCA=∠DAC, ∴CD=AD=AB, ∵AB∥CD, ∴四边形ABCD是平行四边形, ∵AD=AB, ∴▱ABCD是菱形; (2)∵四边形ABCD是菱形, ∴OA=OC,BD⊥AC, ∵CE⊥AB, ∴OE=OA=OC=2, ∴OB==1, ∵∠AOB=∠AEC=90°, ∠OAB=∠EAC, ∴△AOB∽△AEC, ∴, ∴=, ∴CE=. 【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,角平分线的定义,勾股定理,判断出OE=OA=OC是解本题的关键. 21.(8分)如图所示,要在某东西走向的A、B两地之间修一条笔直的公路,在公路起点A处测得某农户C在A的北偏东68°方向上.在公路终点B处测得该农户c在点B的北偏西45°方向上.已知A、B两地相距2400米. (1)求农户C到公路AB的距离;(参考数据:sin22°≈,cos22°≈,tan22°≈) (2)现在由于任务紧急,要使该修路工程比原计划提前4天完成,需将该工程原定的工作效率提高20%,求原计划该工程队毎天修路多少米? 【分析】(1)农户C到公路的距离,也就是求C到AB的距离.要构造直角三角形,再解直角三角形; (2)设原计划x天完成,则由等量关系“原工作效率×(1+25%)=提前完成时的工作效率”列方程求解. 【解答】解:(1)如图,过C作CH⊥AB于H. 设CH=x, 由已知有∠EAC=68°,∠FBC=45°, 则∠CAH=22°,∠CBA=45°. 在Rt△BCH中,BH=CH=x, 在Rt△HBC中,tan∠HBC=, ∴HB==, ∵AH+HB=AB, ∴x+x=2400, 解得x=(米), ∴农户C到公路的距离米. (2)设原计划完成这项工程需要y天,则实际完成工程需要(y﹣4)天. 根据题意得:=(1+20%)×, 解得:y=24. 经检验知:y=24是原方程的根, 2400÷24=100(米). 答:原计划该工程队毎天修路100米. 【点评】考查了构造直角三角形解斜三角形的方法和分式方程的应用. 22.(9分)如图,在R△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点.经过点A,D两点的⊙O分別交AB,AC于点F、E, (1)求证:BC是⊙O的切线; (2)已知AD=2,试求AB•AE的值; (3)在(2)的条件下,若∠B=30°,求图中阴影部分的面积,(结果保留π和根号) 【分析】(1)连接OC,先证OD与AC平行,证得∠ODB=90°,根据切线的判定即可证明BC是⊙O的切线; (2)连接FD,ED,FE,先证△AFD∽△ADC,得到AF•AC=AD2=12,再证△AFE∽△ABC,即可得到AB•AE=AF•AC=12; (3)连接OE,FD,过点O作OH⊥AE于点H,先在Rt△AFD中求出直径AF的长,再证明△AOE是等边三角形,求出△AOE的高,用扇形OAE的面积减去△OAE的面积即可. 【解答】(1)证明:如图1,连接OC, ∵AD平分∠BAC, ∴∠OAD=∠CAD, ∵OA=OD, ∴∠OAD=∠ODA, ∴∠ODA=∠CAD, ∴OD∥AC, ∵∠C=90°, ∴∠ODB=90°, ∴OD⊥BC, ∴BC是⊙O的切线; (2)解:如图2,连接FD,ED,FE, 由题意知,AF为⊙O的直径, ∴∠ADF=∠C=∠AEF=90°, 由(1)知,∠FAD=∠DAC, ∴△AFD∽△ADC, ∴=, ∵AD=2, ∴AF•AC=AD2=12, ∵∠C=∠AEF=90°, ∴FE∥BC, ∴△AFE∽△ABC, ∴=, ∴AB•AE=AF•AC=12; (3)解:如图3,连接OE,FD,过点O作OH⊥AE于点H, ∵∠B=30°, ∴∠BAC=90°﹣30°=60°, ∴∠FAD=∠DAC=∠BAC=30°, 在Rt△AFD中,AD=2, ∴AF=2×=4, ∵∠BAC=60°,OA=OE, ∴△AOE为等边三角形, ∴∠A0E=∠OAH=60°,OA=OE=AE=AF=2, 在Rt△AOH中, OH=2×=, ∴S阴影=S扇形OAE﹣S△OAE =﹣×2× =﹣. 【点评】本题考查了切线的判定定理,三角形相似的判定与性质,扇形的面积公式等,解题的关键是对圆的相关性质要非常熟练. 23.(9分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C (1)填空:b= 1 ,c= 4 ,点C的坐标为 (﹣2,0) . (2)如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值. (3)如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积. 【分析】(1)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=0便可得C点坐标. (2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到=,设点P坐标为(m,﹣m2+m+4),Q点坐标(n,﹣n+4),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用=即可求解. (3)求得P点坐标,利用图形割补法求解即可. 【解答】解:(1)∵直线y=﹣x+4与x轴交于点A,与y轴交于点B. ∴A(4,0),B(0,4). 又∵抛物线过B(0,4) ∴c=4. 把A(4,0)代入y=﹣x2+bx+4得, 0=﹣×42+4b+4,解得,b=1. ∴抛物线解析式为,y=﹣x2+x+4. 令﹣x2+x+4=0, 解得,x=﹣2或x=4. ∴C(﹣2,0). (2)如图1, 分别过P、Q作PE、QD垂直于x轴交x轴于点E、D. 设P(m,﹣m2+m+4),Q(n,﹣n+4), 则PE=﹣m2+m+4,QD=﹣n+4. 又∵==y. ∴n=. 又∵=,即= 把n═代入上式得, = 整理得,4y=﹣m2+2m. ∴y=﹣m2+m. ymax==. 即PQ与OQ的比值的最大值为. (3)如图2, ∵∠OBA=∠OBP+∠PBA=45° ∠PBA+∠CBO=45° ∴∠OBP=∠CBO 此时PB过点(2,0). 设直线PB解析式为,y=kx+4. 把点(2,0)代入上式得,0=2k+4. 解得,k=﹣2 ∴直线PB解析式为,y=﹣2x+4. 令﹣2x+4=﹣x2+x+4 整理得,x2﹣3x=0. 解得,x=0(舍去)或x=6. 当x=6时,﹣2x+4=﹣2×6+4=﹣8 ∴P(6,﹣8). 过P作PH⊥y轴于点H. 则S四边形OHPA=(OA+PH)•OH=(4+6)×8=40. S△OAB=OA•OB=×4×4=8. S△BHP=PH•BH=×6×12=36. ∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=40+8﹣36=12. 【点评】本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/5/22 10:56:42;用户:焦老师;邮箱:13286683318;学号:24114403 第30页(共30页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 广东省 深圳市 福田 中考 数学模拟 试卷 月份
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文