新课标人教A版高中数学必修2球的体积与表面积优质课.pptx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 标人教 高中数学 必修 体积 表面积 优质课
- 资源描述:
-
1.3.2 1.3.2 球的体积与表面积球的体积与表面积O OS4 R2 1.1.柱体、锥体、台体的体积公式分柱体、锥体、台体的体积公式分别是什么?圆柱、圆锥、圆台的表面积别是什么?圆柱、圆锥、圆台的表面积公式分别是什么?公式分别是什么?复习 回顾 1、球的体积公式球的体积公式半径是半径是R的球的体积是的球的体积是从球的结构特征可知,球的大小是其半径所确定的。OABCRR 半径是半径是的球的表面积:的球的表面积:球的表面积是大球的表面积是大圆面积的圆面积的4倍倍R2、球的表面积球的表面积 例例1.1.如图如图,圆柱的底面直径与高都等于球的直径圆柱的底面直径与高都等于球的直径.求证:求证:(1)(1)球的体积等于圆柱体积的,球的体积等于圆柱体积的,(2)(2)球的表面积等于圆柱的侧面积。球的表面积等于圆柱的侧面积。分析:由题可得:球内切于圆柱作圆柱的轴截面(如图)证明证明:(1):(1)设球的半径为设球的半径为R,R,则圆柱的底面半径为则圆柱的底面半径为R,R,高为高为2R2R。.4.4.若两球体积之比是若两球体积之比是1:81:8,则其表面积之比是,则其表面积之比是_.1.若球的表面积变为原来的若球的表面积变为原来的2倍倍,则半径变为原来的则半径变为原来的_倍倍.2.若球半径变为原来的若球半径变为原来的2倍,则表面积变为原来的倍,则表面积变为原来的_倍倍.3.若两球表面积之比为若两球表面积之比为1:2,则其体积之比是,则其体积之比是_.课堂练习课堂练习5.5.将半径为将半径为1 1和和2 2的两个铅球,熔成一个大铅球,那么的两个铅球,熔成一个大铅球,那么 这个大铅球的表面积是这个大铅球的表面积是_.例例2、若正方体的棱长为、若正方体的棱长为a,求:,求:正方体的内切球的体积正方体的内切球的体积正方体的内切球直径=正方体棱长 正方体的外接球的体积对角面对角面ABCDD1C1B1A1O球的内接正方体的对角线等于球直径。球的内接正方体的对角线等于球直径。与正方体所有棱都相切的球的体积与正方体所有棱都相切的球的体积.正方体的内切球正方体的内切球直径直径正方体的外接球正方体的外接球直径直径与正方体所有棱相切的球与正方体所有棱相切的球直径直径探究探究 若正方体的棱长为若正方体的棱长为a,则,则a 1、甲球内切于正方体的各面,乙球内切于该正方体的各条棱,甲球内切于正方体的各面,乙球内切于该正方体的各条棱,丙球外接于该正方体,则三球表面面积之比为丙球外接于该正方体,则三球表面面积之比为()A.1:2:3 B.C.D.A球的外切正方体的棱长等于球直径:球的外切正方体的棱长等于球直径:正方体的面对角线等于球的直径正方体的面对角线等于球的直径球内切于正方体的棱时球内切于正方体的棱时球的内接正方体的体对角线等于球直径:球的内接正方体的体对角线等于球直径:解:设正方体的棱长为解:设正方体的棱长为a 解析:关键是求出球的半径,因为长方体内接于解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。球,所以它的体对角线正好为球的直径。结论(结论(1)长方体的外接球的球心是体对角线的交点,半长方体的外接球的球心是体对角线的交点,半径是体对角线的一半径是体对角线的一半(2)设长方体的长、宽、高分别为a、b、c,则对角线长为2、球的内接长方体的长、宽、高分别为球的内接长方体的长、宽、高分别为 3、2 ,求此球体的表面积和体积求此球体的表面积和体积 一个球与它的外切等边圆锥(圆锥的轴截面为正三角形)的体一个球与它的外切等边圆锥(圆锥的轴截面为正三角形)的体积之比为(积之比为()(A)25 (B)12 (A)25 (B)12 (C)23 (D)49(C)23 (D)49O OBAAB用一个平面用一个平面去截一个球去截一个球O,截面是圆面,截面是圆面O球的截面的性质球的截面的性质:球心和截面圆心的连线垂直于截面球心和截面圆心的连线垂直于截面球心到截面的距离为球心到截面的距离为d,球的半径为,球的半径为R,则,则截面问题截面问题例例3.一球的球面面积为一球的球面面积为256cm2,过此球的一,过此球的一条半径的中点,作垂直于这条半径的截面,条半径的中点,作垂直于这条半径的截面,求截面圆的面积求截面圆的面积.1.1.用与球心距离为用与球心距离为1 1的平面去截球,所得的截面面积为的平面去截球,所得的截面面积为,则球的体积为则球的体积为()()【解析解析】选选C.C.设球的半径为设球的半径为R R,则截面圆的半径为,则截面圆的半径为 所以截面圆的面积所以截面圆的面积球的体积球的体积 故选故选C.C.C 2.2.已知过球面上已知过球面上A A,B B,C C 三点的截面和三点的截面和球心的距离球心的距离为球半径的一半,且为球半径的一半,且ABAB=BCBC=CACA=2,=2,求球的表面积求球的表面积.解解:设截面圆心为设截面圆心为OO,连结连结OAOA,设球半径为设球半径为R.R.则则:例例4 4、在球内有相距在球内有相距1cm1cm的两个平行截面,截面面的两个平行截面,截面面积分别是积分别是5cm5cm2 2和和8cm8cm2 2,球心不在截面之间,球心不在截面之间,求球的表面积求球的表面积.思路点拨:由截面面积可求出截面圆的半径,两思路点拨:由截面面积可求出截面圆的半径,两截面相距截面相距1cm1cm,可求出球的半径,可先画出图形,可求出球的半径,可先画出图形,再把问题平面化再把问题平面化.思考题思考题在球内有相距在球内有相距2cm2cm的两个平行截面,截面面积的两个平行截面,截面面积分别是分别是5cm5cm2 2和和8cm8cm2 2,球心在截面之间,球心在截面之间,求球的表面积求球的表面积.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




新课标人教A版高中数学必修2球的体积与表面积优质课.pptx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4611176.html