分享
分销 收藏 举报 申诉 / 18
播放页_导航下方通栏广告

类型必修二.空间点直线、平面之间的位置关系教案.docx

  • 上传人:天****
  • 文档编号:4606404
  • 上传时间:2024-10-05
  • 格式:DOCX
  • 页数:18
  • 大小:231.21KB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    必修 空间 直线 平面 之间 位置 关系 教案
    资源描述:
    第二章 点、直线、平面之间的位置关系 2.1 空间点、直线、平面之间的位置关系 教案 A 第1课时 教学内容:2.1.1 平面 教学目标 一、知识与技能 1. 利用生活中的实物对平面进行描述,掌握平面的表示法及水平放置的直观图; 2. 掌握平面的基本性质及作用,提高学生的空间想象能力. 二、过程与方法 在师生的共同讨论中,形成对平面的感性认识. 三、情感、态度与价值观 通过实例认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣. 教学重点、难点 教学重点: 1. 平面的概念及表示; 2. 平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言. 教学难点:平面基本性质的掌握与运用. 教学关键:让学生理解平面的概念,熟记平面的性质及性质的应用,使学生对平面的概念及其性质由感性认识上升到理性认识. 教学突破方法:对三个公理要结合图形进行理解,清楚其用途. 教法与学法导航 教学方法:探究讨论,讲练结合法. 学习方法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标. 教学准备 教师准备:投影仪、投影片、正(长)方形模型、三角板. 学生准备:直尺、三角板. 教学过程 教学过程 教学内容 师生互动 设计 意图 创设情境 导入新课 什么是平面 一些能看得见的平面实例. 师:生活中常见的如黑板、桌面等,给我们以平面的印象,你们能举出更多例子吗那么平面的含义是什么呢这就是我们这节课所要学习的内容. 形成平面的概念 续上表 主题探究 合作交流 1. 平面含义 随堂练习 判定下列命题是否正确: ①书桌面是平面; ②8个平面重叠起来要比6个平面重叠起来厚; ③有一个平面的长是50m,宽是20m;④平面是绝对的平,无厚度,可以无限延展的抽象的数学概念. 师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的. 加强对知识的理解培养,自觉钻研的学习习惯.数形结合,加深理解. 主题探究 合作交流 2. 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成45°,且横边画成邻边的2倍长(如图). D C B A α 如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片). (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等. (3)平面内有无数个点,平面可以看成点的集合. 点A在平面α内,记作:A∈α; 点B在平面α外,记作:B α. 师:在平面几何中,怎样画直线(一学生上黑板画) 之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法: α β α β α ·A ·B 通过类比探索,培养学生知识迁移能力,加强知识的系统性. 续上表 主题探究 合作交流 3. 平面的基本性质 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. C · B · A · α 符号表示为 A∈L B∈L ?L?α. A∈α B∈α 公理1:判断直线是否在平面内. 公理2:过不在一条直线上的三点,有且只有一个平面. ·B L A · α 符号表示为:A、B、C三点不共线 ??有且只有一个平面α,使A∈α、B∈α、C∈α. 公理2作用:确定一个平面的依据. β P · α L 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 符号表示为:P∈α∩β??α∩β=L,且P∈L. 公理3作用:判定两个平面是否相交的依据. 教师引导学生思考教材P41的思考题,让学生充分发表自己的见解. 师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出公理1. 教师引导学生阅读教材P42前几行相关内容,并加以解析. 师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等. 引导学生归纳出公理2. 教师用正(长)方形模型,让学生理解两个平面的交线的含义. 注意:(1)公理中“有且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形唯一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面. “有且只有一个平面”也可以说成“确定一个平面.” 引导学生阅读P42的思考题,从而归纳出公理3. 通过类比探索,培养学生知识迁移能力,加强知识的系统性. 续上表 拓展创新 应用提高 4. 教材P43 例1 通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用. 教师及时评价和纠正同学的表达方法,规范画图和符号表示. 巩固 提高. 小结 1.平面的概念,画法及表示方法. 2.平面的性质及其作用. 3.符号表示. 4.注意事项. 学生归纳总结、教师给予点拨、完善并板书. 培养学生归纳整合知识能力,以及思维的灵活性与严谨性. 课堂作业 1. 下列说法中,(1)铺得很平的一张白纸是一个平面;(2)一个平面的面积可以等于6cm2;(3)平面是矩形或平行四边形的形状. 其中说法正确的个数为( ). A. 0 B. 1 C. 2 D. 3 2. 若点A在直线b上,在平面内,则A,b,之间的关系可以记作( ). A . A?b?? B. A?b?? C. A?b?? D. A?b?? 3. 图中表示两个相交平面,其中画法正确的是( ). A B C D 4. 空间中两个不重合的平面可以把空间分成( )部分. 答案:1.A 2. B 3.D 4. 3或4 第2课时 教学内容 2.1.2 空间中直线与直线之间的位置关系 教学目标 一、知识与技能 1. 了解空间中两条直线的位置关系; 2. 理解异面直线的概念、画法,提高空间想象能力; 3. 理解并掌握公理4和等角定理; 4. 理解异面直线所成角的定义、范围及应用. 二、过程与方法 1. 经历两条直线位置关系的讨论过程,掌握异面直线所成角的基本求法. 2. 体会平移不改变两条直线所成角的基本思想和方法. 三、情感、态度与价值观 感受到掌握空间两直线关系的必要性,提高学习兴趣. 教学重点、难点 教学重点 1. 异面直线的概念. 2. 公理4及等角定理. 教学难点 异面直线所成角的计算. 教学关键 提高学生空间想象能力,结合图形来判断空间直线的位置关系,使学生掌握两异面直线所成角的步骤及求法. 教学突破方法 结合图形,利用不同的分类标准给出空间直线的位置关系,由两异面直线所成角的定义求其大小,注意两异面直线所成角的范围. 教法与学法导航 教学方法 探究讨论法. 学习方法 学生通过阅读教材、思考与教师交流、概括,从而较好地完成教学目标. 教学准备 教师准备 投影仪、投影片、长方体模型、三角板. 学生准备 三角板. 教学过程 详见下表. 教学环节 教学内容 师生互动 设计 意图 创设情境 导入新课 异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线. 通过身边实物,相互交流异面直线的概念. 师:空间两条直线有多少种位置关系 设疑激趣点出主题. 探索新知 1. 空间的两条直线的位置关系 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点. 异面直线作图时通常用一个或两个平面衬托,如下图: 教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系. 教师再次强调异面直线不共面的特点. 多媒体演示提高上课效率. 师生互动,突破重点. 探索新知 2. 平行公理 思考:长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',那么BB'与DD'平行吗 公理4:平行于同一条直线的两条直线互相平行. 符号表示为:设a、b、c是三条直线 如果a//b,b//c, 那么a//c. 例2空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形. 师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行.在空间中,是否有类似的规律 生:是. 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用. 例2的讲解让学生掌握了公理4的运用. 续上表 探索新知 3. 思考:在平面上,我们容易证明“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补”.空间中,结论是否仍然成立呢 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 让学生观察、思考: ∠ADC与?A'D'C'、∠ADC与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何 生:∠ADC =? A'D'C',∠ADC + ∠A'B'C' = 180° 教师画出更具一般性的图形,师生共同归纳出如下等角定理. 等角定理为异面直线所成的角的概念作准备. 探索新知 探索新知 4. 异面直线所成的角 如图,已知异面直线a、b,经过空间中任一点O作直线a'∥a、b'∥b,我们把a'与b'所成的锐角(或直角)叫异面直线a与b所成的角(夹角). 例3(投影) 师:① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0,); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角. 以教师讲授为主,师生共同交流,导出异面直线所成的角的概 念. 例3让学生掌握了如何求异面直线所成的角,从而巩固了所学知识. 续上表 拓展创新 应用提高 教材P49 练习1、2. 生完成练习,教师当堂评价. 充分调动学生动手的积极性,教师适时给予肯定. 小结 本节课学习了哪些知识内容 2.计算异面直线所成的角应注意什么 学生归纳,然后老师补充、完善. 小结知识,形成整体 思维. 课堂作业 1. 异面直线是指( ). A. 空间中两条不相交的直线 B. 分别位于两不同平面内的两条直线 C. 平面内的一条直线与平面外的一条直线 D. 不同在任何一个平面内的两条直线 2. 如右图所示,在三棱锥P-ABC的六条棱所在的直线中,异面直线共有( ). A. 2对 B. 3对 C. 4对 D. 6对 3. 正方体ABCD-A1B1C1D1中与棱AA1平行的棱共有( ). A. 1条 B. 2条 C. 3条 D. 4条 4. 空间两个角?、?,且?与?的两边对应平行,若?=60°,则?的大小为( ). . 答案:1. D 2. B 3. C 4. 60°或120° 第3课时 教学内容 2.1.3 空间中直线与平面之间的位置关系 2.1.4 平面与平面之间的位置关系 教学目标 一、知识与技能 1. 了解空间中直线与平面的位置关系,了解空间中平面与平面的位置关系; 2. 提高空间想象能力. 二、过程与方法 1. 通过观察与类比加深了对这些位置关系的理解、掌握; 2. 利用已有的知识与经验归纳整理本节所学知识. 三、情感、态度与价值观 感受空间中图形的基本位置关系,形成严谨的思维品质. 教学重点、难点 教学重点 空间直线与平面、平面与平面之间的位置关系. 教学难点 用图形表达直线与平面、平面与平面的位置关系. 教学关键 借助图形,使学生清楚直线与平面,平面与平面的分类标准,并能依据这些标准对直线与平面、平面与平面的位置关系进行分类及判定. 教学突破方法 恰当地利用图形,用符号语言表述直线与平面、平面与平面的位置关系. 教法与学法导航 教学方法 借助实物,让学生观察事物、思考关系,讲练结合,较好地完成本节课的教学目标. 学习方法 探究讨论,自主学习法. 教学准备 教师准备 多媒体课件,投影仪,三角板,直尺. 学生准备 三角板,直尺. 教学过程 详见下表. 教学过程 教学内容 师生互动 设计意图 创设情境 导入新课 问题1:空间中直线和直线有几种位置关系 问题2:一支笔所在的直线和一个作业本所在平面有几种位置关系 生1:平行、相交、异面; 生2:有三种位置关系: (1)直线在平面内; (2)直线与平面相交; (3)直线与平面平行. 师肯定并板书,点出主题. 复习回顾,激发学习兴趣. 主题探究 合作交流 1.直线与平面的位置关系. (1)直线在平面内——有无数个公共点. (2)直线与平面相交——有且仅有一个公共点. (3)直线在平面平行——没有公共点. 其中直线与平面相交或平行的情况,统称为直线在平面外,记作a. 直线a在面内的符号语言是a.图形语言是: 直线a与面相交的a∩= A.图形语言是符号语言是: 直线a与面平行的符号语言是a∥. 图形语言是: 师:有谁能讲出这三种位置有什么特点吗 生:直线在平面内时二者有无数个公共点. 直线与平面相交时,二者有且仅有一个公共点. 直线与平面平行时,三者没有公共点(师板书). 师:我们把直线与平面相交或直线与平面平行的情况统称为直线在平面外. 师:直线与平面的三种位置关系的图形语言、符号语言各是怎样的谁来画图表示一个和书写一下. 学生上台画图表示. 师;好. 应该注意:画直线在平面内时,要把直线画在表示平面的平行四边形内;画直线在平面外时,应把直线或它的一部分画在表示平面的平行四边形外. 加强对知识的理解培养,自觉钻研的学习习惯,数形结合,加深理解. 续上表 主题探究 合作交流 2.平面与平面的位置关系 (1)问题1:拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的位置关系有几种 (2)问题2:如图所示,围成长方体ABCD – A′B′C′D′的六个面,两两之间的位置关系有几种 (3)平面与平面的位置关系 平面与平面平行——没有公共点. 平面与平面相交——有且只有一条公共直线. 平面与平面平行的符号语言是∥.图形语言是: 师:下面请同学们思考以下两个问题(投影). 生:平行、相交. 师:它们有什么特点 生:两个平面平行时二者没有公共点,两个平面相交时,二者有且仅有一条公共直线(师板书). 师:下面请同学们用图形和符号把平面和平面的位置关系表示出来…… 师:下面我们来看几个例子(投影例1). 通过类比探索,培养学生知识迁移能力. 加强知识的系统性. 续上表 拓展创新 应用提高 例1 下列命题中正确的个数是( B ). ①若直线l上有无数个点不在平面内,则l∥. ②若直线l与平面平行,则l与平面内的任意一条直线都平行. ③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行. ④若直线l与平面平行,则l与平面内的任意一条直线没有公共点. A. 0 B. 1 C. 2 D. 3 例2 已知平面∥,直线a,求证a∥. 证明:假设a不平行,则a在内或a与相交. ∴a与有公共点. 又a. ∴a与有公共点,与面∥面矛盾. ∴∥. 学生先独立完成,然后讨论、共同研究,得出答案.教师利用投影仪给出示范. 师:如图,我们借助长方体模型,棱AA1所在直线有无数点在平面ABCD外,但棱AA1所在直线与平面ABCD相交,所以命题①不正确;A1B1所在直线平行于平面ABCD,A1B1显然不平行于BD,所以命题②不正确;A1B1∥AB,A1B1所在直线平行于平面ABCD,但直线AB 平面ABCD,所以命题③不正确;l与平面平行,则l与无公共点,l与平面内所有直线都没有公共点,所以命题④正确,应选B. 师:投影例2,并读题,先让学生尝试证明,发现正面证明并不容易,然后教师给予引导,共同完成,并归纳反证法步骤和线面平行、面面平行的理解. 例1 通过示范传授学生一个通过模型来研究问题的方法,加深对概念的理解.例2目标训练学生思维的灵活,并加深对面面平行、线面平行的理解. 小结 1.直线与平面、平面与平面的位置关系. 2.“正难到反”数学思想与反证法解题步骤. 3.“分类讨论”数学思想. 学生归纳总结、教师给予点拨、完善并板书. 培养学生整合知识能力,以及思维的灵活性与严谨性. 课堂作业 1. 直线与平面平行的充要条件是这条直线与平面内的( ). A.一条直线不相交 B.两条直线不相交 C.任意一条直线都不相交 D.无数条直线都不相交 【解析】直线与平面平行,则直线与平面内的任意直线都不相交,反之亦然;故应选C. 2.“平面内有无穷条直线都和直线l平行”是“”的( ). A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.即不充分也不必要条件 【解析】如果直线在平面内,直线可能与平面内的无穷条直线都平行,但直线不与平面平行,应选B. 3.如图,试根据下列要求,把被遮挡的部分改为虚线: (1)AB没有被平面遮挡; (2)AB被平面遮挡. 答案:略 4.已知,,直线a,b,且∥,a,b,则直线a与直线b具有怎样的位置关系 【解析】平行或异面. 5.如果三个平面两两相交,那么它们的交线有多少条画出图形表示你的结论. 【解析】三个平面两两相交,它们的交线有一条或三条. 6. 求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内. 已知:l∥,点P∈,P∈m,m∥l, 求证:. 证明:设l与P确定的平面为,且= m′,则l∥m′. 又知l∥m,, 由平行公理可知,m与m′重合. 所以. 教案 B 第1课时 教学内容:2.1.1 平面 教学目标 1. 了解平面的概念,掌握平面的画法、表示法及两个平面相交的画法; 2. 理解公理一、二、三,并能运用它们解决一些简单的问题; 3. 通过实践活动,感知数学图形及符号的作用,从而由感性认识提升为理性认识,注意区别空间几何与平面几何的不同,多方面培养学生的空间想象力. 教学重点:公理一、二、三,实践活动感知空间图形. 教学难点:公理三,由抽象图形认识空间模型. 学法指导:动手实践操作,由模型到图形,由图形到模型不断感知. 教学过程 一、引入 在平面几何中,我们已经了解了平面图形都是由点和线构成的,我们所做的一切都是在一个无形的平面中进行,请同学谈谈到底平面是什么样子的可以举实例说明. 在平面几何中,我们也知道直线是无限延伸的,我们是怎样表示这种无限延伸的那么你认为平面是否有边界你又认为如何去表示平面呢 二、新课 以上问题经过学生分小组充分讨论,由各小组代表陈述你这样表示的理由教师暂不作评判,继续往下进行. 实践活动: 1. 仔细观察教室,举出空间的点、线、面的实例. 2. 只准切三刀,请你把一块长方体形状的豆腐切成形状、大小都相同的八块. 3. 请你准备六根游戏棒,以每根游戏棒为一边,设法搭出四个正三角形. 以上这些问题已经走出了平面的限制,是空间问题.今后我们将研究空间中的点、线、面之间的关系. 图1 问题:指出上述活动中几何体的面,并想想如何在一张纸上画出这个几何体至此我们应感受到画几何体与我们的视角有一定的关系. 练习一:试画出下列各种位置的平面. 1. 水平放置的平面         2. 竖直放置的平面 图2(1) 图2(2) 3. 倾斜放置的平面 图3 4. 请将以下四图中,看得见的部分用实线描出. 图4(1) 图4(2) 图4(3) 图4(4) 小结:平面的画法和表示法. 我们常常把水平的平面画成一个平行四边形,用平行四边形表示一个平面,如图5. 平行四边形的锐角通常画成45o,且横边长等于其邻边长的2倍. 如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,如图6. 图5 图6 图7 平面常用希腊字母等表示(写在代表平面的平行四边形的一个角上),如平面、平面;也可以用代表平面的平行四边形的四个顶点,或相对的两个顶点的大写英文字母作为平面的名称,图5的平面,也可表示为平面ABCD,平面AC或平面BD. 前面我们感受了空间中面与面的关系及画法,现在让我们研究一下点、线与一个平面会有怎样的关系 显然,一个点与一个平面有两种位置关系:点在平面内和点在平面外. 我们知道平面内有无数个点,可以认为平面是由它内部的所有的点组成的点集,因此点和平面的位置关系可以引用集合与元素之间关系. 从集合的角度,点A在平面内,记为;点B在平面外,记为 (如图7). 再来研究一下直线与平面的位置关系. 将学生分成小组,并动手实践操作后讨论:把一把直尺边缘上的任意两点放在桌面上,直尺的整个边缘就落在桌面上吗 请同学们再试着想一下,如何用图形表示直线与平面的这些空间关系 由“两点确定一条直线”这一公理,我们不难理解如下结论: 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 且. A B α l 图8 例1 分别用符号语言、文字语言描述下列图形. A a A a a 图9(1) 图9(2) 图9(3) 例2 识图填空(在空格内分别填上). a b B α A A____a;A____α, B____a;B____α, a____α;a____α= B, b____α;B____b. 图10 图11 问题情景:制作一张桌子,至少需要多少条腿为什么 公理2 经过不在同一条直线上的三点,有且只有一个平面. 实践活动:取出两张纸演示两个平面会有怎样的位置关系,并试着用图画出来.                    图12 试问:如图13是两个平面的另一种关系吗(相对于同学们得出的关系)  由平面的无限延展性,不难理解如下结论: 公理3 如果两个不重合平面有一个公共点,那么它们有且只有一条过这个公共点的直线. β l α P 且 图13 例3 如图14用符号表示下列图形中点、直线、平面之间的位置关系. l 【分析】根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来. 【解析】在(1)中,. 在(2)中,. 三、巩固练习 教材P43练习1—4. 四、课堂小结 (1)本节课我们学习了哪些知识内容 (2)三个公理的内容及作用是什么 (3)判断共面的方法. 五、布置作业 P51 习题A组 1,2. 第2课时 教学内容:2.1.2 空间中直线与直线之间的位置关系 教学目标: 一、知识目标 1. 了解空间中两条直线的位置关系; 2. 理解异面直线的概念、画法,培养学生的空间想象能力; 3. 理解并掌握公理4. 二、能力目标 1. 让学生在观察中培养自主思考的能力; 2. 通过师生的共同讨论培养合作学习的能力. 三、情感、态度与价值观 让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣. 教学重点、难点 教学重点:1. 异面直线的概念;2. 公理4. 教学难点:异面直线的概念. 学法与教学用具 1. 学法:学生通过观察、思考与教师交流、概括,从而较好地完成本节课的教学目标; 2. 教学用具:多媒体、长方体模型、三角板. 教学过程 一、复习引入 1.平面内两条直线的位置关系有(相交直线、平行直线). 相交直线(有一个公共点);平行直线(无公共点). 2.实例.十字路口——立交桥. 立交桥中, 两条路线AB,CD既不平行,又不相交(非平面问题). 六角螺母 A B C D 二、新课讲解 1. 异面直线的定义 不同在任何一个平面内的两条直线叫做异面直线. 练习:在教室里找出几对异面直线的例子. 注1:两直线异面的判别一 : 两条直线既不相交、又不平行. 两直线异面的判别二 : 两条直线不同在任何一个平面内. 合作探究一:分别在两个平面内的两条直线是否一定异面 答:不一定,它们可能异面,可能相交,也可能平行. 空间两直线的位置关系: 按平面基本性质分 (1)同在一个平面内:相交直线、平行直线; (2)不同在任何一个平面内:异面直线. 按公共点个数分 (1)有一个公共点: 相交直线; (2)无公共点:平行直线、异面直线. 2.异面直线的画法 说明:画异面直线时,为了体现它们不共面的特点,常借助一个或两个平面来衬托. 合作探究二:如下图是一个正方体的展开图,如果将它还原为正方体, 那么 AB , CD ,EF, GH 这四条线段所在直线是异面直线的有 对? H C B E D G A 答:共有三对. 3. 异面直线所成的角 (1)复习回顾 A B G F H E D C 在平面内,两条直线相交成四个角, 其中不大于90度的角称为它们的夹角, 用以刻画两直线的错开程度, 如图所示. O (2)问题提出 在空间,如图所示,正方体ABCD-EFGH中, 异面直线AB与HF的错开程度可以怎样来刻画 (3)解决问题 思想方法:平移转化成相交直线所成的角,即化空间图形问题为平面图形问题. 异面直线所成角的定义:如图,已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b ′∥b则把a ′与b ′所成的锐角(或直角)叫做异面直线所成的角(或夹角). a′ O b′ 异面直线所成的角的范围(0°,90°). 注2:如果两条异面直线 a , b 所成的角为直角,我们就称这两条直线互相垂直, 记为a⊥b. 思考:这个角的大小与O点的位置有关吗即O点位置不同时,这一角的大小是否改变? 答:这个角的大小与O点的位置无关. (4)理论支持 (一)我们知道,在同一平面内, 如果两条直线都和第三条直线平行,那么这两条直线互相平行.在空间这一规律是否还成立呢? 观察:将一张纸如图进行折叠 , 则各折痕及边a,b,c,d,e,… 之间有何关系 a b c e d a∥b ∥c ∥d ∥e ∥ … 公理4 在空间平行于同一条直线的两条直线互相平行.——平行的传递性 推广:在空间平行于一条已知直线的所有直线都互相平行. D1 C1 B1 A1 C A B D (二)在平面内, 我们可以证明 “ 如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补 ”.空间中这一结论是否仍然成立呢 观察:如图所示,长方体ABCD-A1B1C1D1中, ∠ADC与∠A1D1C1 ,∠ADC与∠A1B1C1两边分别对应平行,这两组角的大小关系如何? 答:从图中可看出, ∠ADC=∠A1D1C1,∠ADC +∠A1B1C1=180°. 定理(等角定理) 空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补. 证: 这个角的大小与O点的位置无关. 【证明】如图,再过空间另一点O′作a″∥a ,设a ′与 b ′所成的角为∠1,a ″与 b 所成的角为∠2 , ∵a′∥a,a″∥a,∴a′∥a″(公理4),同理 b′∥b,∴∠1=∠2(等角定理). 注3:在求作异面直线所成的角时,O点常选在其中的一条直线上(如线段的端点,线段的中点等). 三、例题选讲 1. 下图长方体中 G F H E B C D A (1)说出以下各对线段的位置关系? ①EC和BH是相交直线 , ②BD和FH是平行直线, ③BH和DC是异面直线. (2)与棱AB所在直线异面的棱共有4条. 课后思考:长方体的棱中共有多少对异面直线 A B G F H E D C 例2如图,正方体ABCD-EFGH中O为侧面ADE的中心,求(1)BE与CG所成的角 (2)FO与BD所成的角 【解析】(1)如图:∵CG∥BF, ∴∠EBF(或其补角)为异面直线BE与CG所成的角, 又 ? BEF中∠EBF =45° ,所以BE与CG所成的角为45°. (2)连接FH, ∵HD∥EA∥FB, ∴HD∥FB,∴四边形HFBD为平行四边形, ∴HF∥BD,∴∠HFO(或其补角)为异面直线FO与BD所成的角. 连接HA、AF,易得FH=HA=AF,∴△AFH为等边三角形,又依题意知O为AH中点, ∴∠HFO=30o 即FO与BD所成的夹角是30 o. 注4:求异面直线的步骤是:“一作(找)二证三求”. 四、课堂练习 G F H E B C D A 例3 如图,已知长方体ABCD-EFGH中,AB =, AD =,AE = 2. (1)求BC 和EG 所成的角是多少度? (2)求AE 和BG 所成的角是多少度? 答:(1) 45o (2) 60o 五、课堂小结 (1)本节课学习了哪些知识内容异面直线、平行公理、等角定理、异面直线所成的角. (2)计算异面直线所成的角应注意什么把空间角转化为平面角. 六、课后作业 P48 练习1,2. P51~52习题2.1 A组 3,4(1)(2)(3)(6),5,6, B组1. 第3课时 教学内容:2.1.3 空间中直线与平面之间的位置关系 2.1.4平面与平面之间的位置关系 教学目标 一、知识与技能 1. 了解空间中直线与平面的位置关系; 2. 了解空间中平面与平面的位置关系; 3. 培养学生的空间想象能力. 二、过程与方法 1. 通过观察与类比加深了对这些位置关系的理解、掌握; 2. 利用已有的知识与经验归纳整理本节所学知识. 教学重点、难点 教学重点:空间直线与平面、平面与平面之间的位置关系. 教学难点:用图形表达直线与平面、平面与平面的位置关系. 学法与教学用具 1. 学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标. 2. 教学用具:投影仪、长方体模型. 教学过程 一、创设情景、导入课题 教师以生活中的实例以及课本P53的思考题为载体,提出了空间中直线与平面有多少种位置关系(板书课题) 二、研探新知 1. 引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系: (1)直线在平面内——有无数个公共点; (2)直线与平面相交——有且只有一个公共点; (3)直线在平面平行——没有公共点. 指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示直线与平面的三种位置关系(见下页图). a ?α a∩α=A a∥α 一般地,直线a在平面α内,应把直线a画在表示平面α的平行四边形内;直线a在平面α外,应把直线a 或它的一部分画在表示平面α的平行四边形外;直线a与平面α相交于点A,记作a∩α=A;直线a与平面α平行,记作a∥α. 例4 下列命题中正确的个数是(  ). (1)若直线l上有无数个点不在平面α内,则l∥α. (2)若直线l与平面α平行,则l与平面α内的任意一条直线都平行. (3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行. (4)若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点. A. 0  B. 1  C. 2  D. 3 【分析】可以借助长方体模型来看上述问题是否正确. 问题(1)不正确,相交时也符合. 问题(2)不正确,如右图中,A′B与平面DCC′D′平行,但它与CD不平行. 问题(3)不正确.另一条直线有可能在平面内,如AB∥CD,AB与平面DCC′D′平行,但直线CD平面DCC′D′. 问题(4)正确,所以选B. 2. 引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系: (1)拿出两本书,看作两个平面,上下、左右移动和翻转,看看它们之间的位置关系有几种 (2)如图,围成长方体ABCD-A′B′C′D′六个面,两两之间的位置关系有几种 在问题(1)中,通过观察可以发现,两本书可以平行,也可以是相交,注意平面是无限延展的. 在问题(2)中上下面,左右面,前后面是平行的,相邻的两个面是相交的,所以位置关系有平行与相交两种. 两个平面之间的关系有且只有两种: (1)两个平面平行——没有公共点; (2)两个平面相交——有且只有一条公共直线. 用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为(见下页) α β L α β α∥β α∩β= L 教师指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行. 探究:已知平面α,β,直线a,b,且α∥β,aα, bβ,则直线a与直线b具有什么样的位置关系 让学生独立思考,稍后教师作指导,加深学生对这两种位置关系的理解. 没有交点,有可能平行,有可能是异面直线. 教材P49练习(学生独立完成后教师检查、指导) 三、归纳整理、整体认识 教师引导学生归纳,整理本节课的知识脉络,提升他们掌握知识的层次. 四、作业 1. 让学生回去整理这节课的内容,理清脉络. 2. 教材P51习题2.1 A组第5题.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:必修二.空间点直线、平面之间的位置关系教案.docx
    链接地址:https://www.zixin.com.cn/doc/4606404.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork