人教版八年级数学上册期末综合试题带答案.doc
《人教版八年级数学上册期末综合试题带答案.doc》由会员分享,可在线阅读,更多相关《人教版八年级数学上册期末综合试题带答案.doc(20页珍藏版)》请在咨信网上搜索。
人教版八年级数学上册期末综合试题带答案 一、选择题 1.下列平面图形中,不是轴对称图形的是( ) A. B. C. D. 2.已知一粒米的质量是0.0000021千克,这个数字用科学记数法表示为( ) A.千克 B.千克 C.千克 D.千克 3.下列运算正确的是( ) A.a2•a2=2a2 B.a9÷a3=a6 C.(﹣a2)3=a6 D.a2+a4=a6 4.若分式的值为0,则x的值是( ) A. B. C.3 D.2 5.下列因式分解正确的是( ) A. B. C. D. 6.下列各式从左到右的变形一定正确的是( ) A. B. C. D. 7.如图所示,已知AB=AE,∠B=∠E,再添一个条件仍不能证明△ABC≌△AEF的是( ) A.∠EAB=∠FAC B.AC=AF C.BC=EF D.∠ACB=∠AFE 8.关于x的方程有增根,则m的值是( ) A.0 B.2或3 C.2 D.3 9.如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形A和正方形B并列放置后构造新正方形,测得阴影部分面积为6,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形纸片均无重叠部分)则图3阴影部分面积为( ) A.14 B.12 C.24 D.22 10.如图,已知直线AB:y=x+分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE,当BD+BE的值最小时,则H点的坐标为( ) A.(0,4) B.(0,5) C.(0,) D.(0,) 二、填空题 11.分式的值为,则 ______ . 12.在平面直角坐标系中,若点P(a﹣3,1)与点Q(2,b+1)关于x轴对称,则a+b的值是_______. 13.已知x为整数,且为正整数,则整数________. 14.计算______. 15.如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为_________. 16.9x2+mx+16是一个完全平方式,那么m=_________或_________. 17.若一个多边形的内角和为1800°,则这个多边形是__________.(填形状) 18.如图,,,,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.它们运动的时间为设点的运动速度为,若使得与全等,则的值为______. 三、解答题 19.分解因式: (1); (2) 20.解方程: (1); (2). 21.如图所示,,,,求证:. 22.解答 (1)问题发现. 如图1,,,则______. 由此发现:∠1与∠C、∠A的数量关系是______,用语言叙述为:三角形一个外角等于______. (2)结论运用 如图2,中,,沿CD折叠,使点B恰好落在AC边上的点E处.若,求∠BDC的度数. 24.超市准备购进甲、乙两种绿色袋装食品.甲、乙两种绿色袋装食品的进价和售价如下表. 甲 乙 进价(元/袋) m m-2 售价(元/袋) 20 13 已知用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同. (1)求m的值; (2)要使购进的甲、乙两种绿色袋装食品共800袋,且总利润不少于4800元,则该超市至少购进甲种绿色袋装食品多少袋? 24.数学活动课上,老师准备了若干个如图1的三种纸片,种纸片边长为的正方形,中纸片是边长为的正方形,种纸片是长为、宽为的长方形.并用种纸片一张,种纸片一张,种纸片两张拼成如图2的大正方形. (1)请问两种不同的方法求图2大正方形的面积. 方法1:____________________;方法2:________________________; (2)观察图2,请你写出下列三个代数式:之间的等量关系. _______________________________________________________; (3)根据(2)题中的等量关系,解决如下问题: ①已知:,求的值; ②已知,则的值是____. 25.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足. (1)直接写出______,______; (2)连接AB,P为内一点,. ①如图1,过点作,且,连接并延长,交于.求证:; ②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标. 26.△ABC、△DPC都是等边三角形. (1)如图1,求证:AP=BD; (2)如图2,点P在△ABC内,M为AC的中点,连PM、PA、PB,若PA⊥PM,且PB=2PM. ①求证:BP⊥BD; ②判断PC与PA的数量关系并证明. 【参考答案】 一、选择题 2.A 解析:A 【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线对称,进而判断得出答案. 【详解】解:B、C、D都是轴对称图形,A不是轴对称图形, 故选:A. 【点睛】本题主要考查了轴对称图形的识别,正确掌握轴对称图形的定义是解题关键. 3.C 解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000021千克用科学计数法表示为千克,故C正确. 故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.B 解析:B 【分析】利用同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则,合并同类项的法则对各项进行运算即可. 【详解】解:A.,故A不符合题意; B.,故B符合题意; C.,故C不符合题意; D.与不属于同类项,不能合并,故D不符合题意; 故选:B. 【点睛】本题主要考查同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,解答的关键是对相应的运算法则的掌握. 5.C 解析:C 【分析】根据分式有意义的条件及值为0的条件,即可求得 【详解】解:分式的值为0, 解得 故x的值是3, 故选:C. 【点睛】本题考查了分式有意义的条件及值为0的条件,熟练掌握和运用分式有意义的条件及值为0的条件是解决本题的关键. 6.D 解析:D 【分析】根据因式分解的定义和方法逐项判断即可. 【详解】解:A、不是因式分解,故此选项错误; B、,故此选项错误; C、,故此选项错误; D、,正确; 故选:D. 【点睛】此题主要考查了因式分解,关键是掌握因式分解的定义和方法. 7.D 解析:D 【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,且扩大(缩小)的倍数不能为0,分值不变,即可得出答案. 【详解】解:A、,故本选项错误,不符合题意; B、,故本选项错误,不符合题意; C、,故本选项错误,不符合题意; D、,故本选项正确,符合题意; 故选:D. 【点睛】本题考查了分式的基本性质.注意,①无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0;②同时在分式的变形中,还要注意符号法则,即分式的分子、分母及分式的符号,只有同时改变两个其值才不变. 8.B 解析:B 【分析】根据全等三角形的判定进行逐项分析即可. 【详解】A.∵∠EAB=∠FAC,∴∠CAB=∠FAE,两角及夹边对应相等能判断两三角形全等,故该选项不符合题意; B. AC=AF,两边及一边对角对应相等不能判断两三角形全等,故该选项符合题意; C. BC=EF,两边及夹角对应相等能判断两三角形全等,故该选项不符合题意; D. ∠ACB=∠AFE,两角及其中一角的对边对应相等能判断两三角形全等,故该选项不符合题意. 故选:B. 【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的方法SSS,SAS,ASA,AAS是解题关键. 9.D 解析:D 【分析】分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,求出x的值,代入整式方程即可求出m的值. 【详解】解:去分母得:, ∴, ∵关于x的方程有增根, ∴x-2=0, 解得:x=2 ∴. 故选:D. 【点睛】本题主要考查根据分式方程根的情况求参数的值.根据分式方程有增根求出x的值,并代入去分母后转化的整式方程中求m的值是解题的关键. 10.A 解析:A 【分析】由图1可知,阴影部分面积a2-b2=2,图2可知,阴影部分面积(a+b)2-a2-b2=6,进而得到ab=3,由图3可知,阴影部分面积(2a+b)2-3a2-2b2=a2-b2+4ab,即可得出答案. 【详解】解:设正方形A的边长为a,正方形B的边长为b, 由图1可知,阴影部分面积a2-b2=2, 图2可知,阴影部分面积(a+b)2-a2-b2=6, 所以ab=3, 由图3可知,阴影部分面积(2a+b)2-3a2-2b2=a2-b2+4ab=2+12=14. 故选:A. 【点睛】本题考查了平方差公式和完全平方公式的几何背景以及整式的加减,利用公式是解决问题的关键. 11.A 解析:A 【分析】作EF⊥BC于F,设AD=EC=x.利用勾股定理可得BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到G(,3),K(,)的距离之和最小. 【详解】解:由题意A(0,),B(-3,0),C(3,0), ∴AB=AC=8, 作EF⊥BC于F,设AD=EC=x. ∵EF∥AO, ∴, ∴EF=,CF=, ∵OH∥EF, ∴, ∴OH=, ∴BD+BE=+ =+, 要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到K(,3),G(,)的距离之和最小. 设G关于x轴的对称点G′(,),直线G′K的解析式为y=kx+b, 则有, 解得k=,b=, ∴直线G′K的解析式为y=x, 当y=0时,x=, ∴当x=时,MG+MK的值最小, 此时OH===4, ∴当BD+BE的值最小时,则H点的坐标为(0,4), 故选A. 【点睛】本题考查一次函数图象上的点的特征、轴对称最短问题、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题. 二、填空题 12. 【分析】分式的值为的条件是:分子;分母两个条件需同时具备,缺一不可.据此可以解答本题. 【详解】解:根据题意得:且 解得:. 故答案为:. 【点睛】本题考查了分式的值为零的条件,由于该类型的题易忽略分母不为这个条件,所以常以这个知识点来命题. 13.3 【分析】掌握关于x轴对称的点,横坐标不变,纵坐标互为相反数,即可得出答案. 【详解】由题意可得:, 解得:,因此a+b=3. 故答案为:3. 【点睛】本题考查了关于坐标轴对称的点的特征,准确找出横纵坐标的关系是本题的关键. 14.4或5##5或4 【分析】根据异分母分式加减法计算得,利用x为整数,且为正整数,得到x-3=1或x-3=2,由此得到x的值. 【详解】解: = = = = ∵x为整数,且为正整数, ∴x-3=1或x-3=2, ∴x=4或5, 故答案为4或5. 【点睛】此题考查了异分母分式的加减法,正确掌握异分母分式加减法计算法则并结合题意得到x-3=1或x-3=2是解题的关键. 15.125##18 【分析】先把原式变为,再根据积的乘方的逆运算求解即可. 【详解】解: , 故答案为:0.125. 【点睛】本题主要考查了积的乘方的逆运算,熟知积的乘方的逆运算是解题的关键. 16.10 【分析】首先连接PB,由中垂线的性质可得PB=PC,由于△APC的周长为AC+PA+PC,AC长度固定,则只要PA+PB最小即可,此时可推出P、A、B三点共线,即PA+PB=AB,由此计算即 解析:10 【分析】首先连接PB,由中垂线的性质可得PB=PC,由于△APC的周长为AC+PA+PC,AC长度固定,则只要PA+PB最小即可,此时可推出P、A、B三点共线,即PA+PB=AB,由此计算即可. 【详解】解:如图,连接PB,则由中垂线的性质可得PB=PC, ∵△APC的周长=AC+PA+PC, ∴△APC的周长=AC+PA+PB, ∵AC=4, ∴要使得△APC的周长最小,使得PA+PB最小即可, 根据两点之间线段最短,可知当P、A、B三点共线时,PA+PB最小, 此时,P点在AB边上,PA+PB=AB=6, ∴PA+PB的最小值为6, ∴△APC的周长最小为:6+4=10, 故答案为:10. 【点睛】本题考查最短路径问题,以及中垂线的性质,理解并掌握中垂线的性质,以及最短路径问题的基本处理方式是解题关键. 17.24 【分析】由两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可得到m的值. 【详解】∵是一个完全平方式,且 ∴m=±24. 故答案为:24, 【点睛】此 解析: 24 【分析】由两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可得到m的值. 【详解】∵是一个完全平方式,且 ∴m=±24. 故答案为:24, 【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 18.十二边形 【分析】由n边形的内角和可以表示成(n2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数. 【详解】解:这个正多边形的边数是n, 则(n2)•180°=1800°, 解析:十二边形 【分析】由n边形的内角和可以表示成(n2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数. 【详解】解:这个正多边形的边数是n, 则(n2)•180°=1800°, 解得:n=12, 则这个正多边形是12. 故答案为:十二边形. 【点睛】此题考查了多边形的内角和定理.注意多边形的内角和为:(n2)×180°. 19.或##或 【分析】分两种情形:①当≌时,可得:;②当≌时,, 根据全等三角形的性质分别求解即可. 【详解】解:①当≌时,可得:, 运动时间相同, ,的运动速度也相同, ; ②当≌时, 解析:或##或 【分析】分两种情形:①当≌时,可得:;②当≌时,, 根据全等三角形的性质分别求解即可. 【详解】解:①当≌时,可得:, 运动时间相同, ,的运动速度也相同, ; ②当≌时, ,, , , 故答案为:或. 【点睛】本题考查全等三角形的性质,路程、速度、时间之间的关系等知识,解题的关键是理解题意,灵活运用所学知识进行分类解决问题. 三、解答题 20.(1) (2) 【分析】(1)利用提取公因式法,即可分解因式; (2)首先进行分组,再利用完全平方公式和平方差公式,即可分解因式. (1) 解: (2) 解: 【点睛 解析:(1) (2) 【分析】(1)利用提取公因式法,即可分解因式; (2)首先进行分组,再利用完全平方公式和平方差公式,即可分解因式. (1) 解: (2) 解: 【点睛】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差和完全平方公式是解题关键. 21.(1) (2)无解 【分析】(1)方程的两边同时乘以公分母,化为整式方程,进而解方程求解即可; (2)方程的两边同时乘以公分母,化为整式方程,进而解方程求解即可; (1) , 方程的两边 解析:(1) (2)无解 【分析】(1)方程的两边同时乘以公分母,化为整式方程,进而解方程求解即可; (2)方程的两边同时乘以公分母,化为整式方程,进而解方程求解即可; (1) , 方程的两边同时乘以公分母,得: , , 解得, 经检验,是原方程的解. (2) , 方程的两边同时乘以公分母,得, , , 解得, 经检验,是原方程增解. 【点睛】本题考查了解分式方程,找到公分母是解题的关键,注意检验. 22.见解析 【分析】根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC. 【详解】证明:∵, ∴. ∴, 在与中 , ∴ (SAS). 【点睛】本题考 解析:见解析 【分析】根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC. 【详解】证明:∵, ∴. ∴, 在与中 , ∴ (SAS). 【点睛】本题考查了三角形全等的判定方法和性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL. 23.(1)30°;;和它不相邻的两个内角的和; (2). 【分析】(1)先求出∠ABC=80°,再根据三角形内角和定理即可求出,进而可以得到,用语言叙述为:三角形一个外角等于和它不相邻的两个内角的和 解析:(1)30°;;和它不相邻的两个内角的和; (2). 【分析】(1)先求出∠ABC=80°,再根据三角形内角和定理即可求出,进而可以得到,用语言叙述为:三角形一个外角等于和它不相邻的两个内角的和; (2)根据折叠性质得到,再根据(1)结论即可求解. (1)解:∵,∴∠ABC=180°-∠1=80°,∵∠C=70°,∴∠A=180°-∠ABC-∠C=30°,由此发现:∠1与∠C、∠A的数量关系是,用语言叙述为:三角形一个外角等于和它不相邻的两个内角的和.故答案为:30°,,和它不相邻的两个内角的和; (2)解:由折叠得到,∴. 【点睛】本题考查了三角形内角和定理,三角形外角定理,理解题意,准确掌握两个定理是解题关键. 24.(1)m的值为10 (2)至少购进甲种绿色贷装食品160袋 【分析】(1) 利用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同列分式方程,再解分式方程即可; (2)设 解析:(1)m的值为10 (2)至少购进甲种绿色贷装食品160袋 【分析】(1) 利用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同列分式方程,再解分式方程即可; (2)设购进甲种绿色贷装食品x袋,由两种绿色袋装食品的利润之和不少于4800元,列不等式,再解不等式即可. (1)解:由题意得:解得:m=10, 经检验,m=10为原方程的解, 所以m的值为10 (2)设购进甲种绿色贷装食品x袋,由题意得:(20-10)x+(13-8)(800-x)≥4800, 解得x≥160, 答:至少购进甲种绿色贷装食品160袋. 【点睛】本题考查的是分式方程的应用,一元一次不等式的应用,确定相等关系与不等关系列方程或不等式是解本题的关键. 25.(1),;(2);(3)①,② 【分析】(1)依据正方形的面积计算公式即可得到结论; (2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系; (3)①依据a+b=5 解析:(1),;(2);(3)①,② 【分析】(1)依据正方形的面积计算公式即可得到结论; (2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系; (3)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=17,即可得到ab=4;②设2020-a=x,a-2019=y,即可得到x+y=1,x2+y2=5,依据(x+y)2=x2+2xy+y2,即可得出xy==,进而得到=. 【详解】解:(1)图2大正方形的面积=,图2大正方形的面积= 故答案为:,; (2)由题可得,,之间的等量关系为:故答案为:; (3)① ②设2020-a=x,a-2019=y,则x+y=1, ∵, ∴x2+y2=5, ∵(x+y)2=x2+2xy+y2, ∴xy==-2, 即. 【点睛】本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式是解本题的关键. 26.(1)3,;(2)①见解析;②的坐标为(,) 【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可; (2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明 解析:(1)3,;(2)①见解析;②的坐标为(,) 【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可; (2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB; ②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n) ,M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解. 【详解】(1)∵, ∴, ∴,, 解得:,, 故答案为:3,; (2)①连接AC, ∵∠COP=∠AOB=90°, ∴∠COP-∠AOP =∠AOB-∠AOP, ∴, 在△OPB和△OCA中, , ∴△OPB≌△OCA(SAS), ∴AC=BP,∠OCA=∠OPB=90°, 过点B作BN⊥BP,交CP的延长线于点N, ∵∠COP=90°,OP=OC, ∴∠OCP=∠OPC=∠ACP=45°, ∵∠OPB=90°, ∴∠BPN=45°, ∴△BNP为等腰直角三角形, ∴∠BPN=∠N=45°, ∴BN=BP=AC, 在△ACD和△BND中, , ∴△ACD≌△BND(AAS), ∴AD=DB; ②∵∠AOB=90°,AO=OB, ∴△AOB为等腰直角三角形, ∴∠OBA=45°, ∵∠MBO=∠ABP, ∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°, ∴∠MBP=45°, ∵OP⊥BP, ∴△BMP为等腰直角三角形, ∴MP=BP, 过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE, ∴∠MPE+∠EMP=∠MPE +∠FPB=90°, ∴∠EMP=∠FPB, 在△PBF和△MPE中, , ∴△PBF≌△MPE(AAS), ∴BF=EP,PF=ME, ∵P(2n,−n), ∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n, ∴MH=ME-EH=3−n−2n=3−3n, ∴E(2n,n) ,M(3n−3,n), ∴点P,E关于x轴对称, ∴OE=OP,∠OEP=∠OPE, 同理OM=OE,点M,E关于y轴对称, ∴3n−3+2n=0, 解得,即点M的坐标为(,). 【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题. 27.(1)证明过程见解析; (2)①证明过程见解析;②PC=2PA,理由见解析. 【分析】(1)证明△BCD≌△ACP(SAS),可得结论; (2)①如图2中,延长PM到K,使得MK=PM,连接C 解析:(1)证明过程见解析; (2)①证明过程见解析;②PC=2PA,理由见解析. 【分析】(1)证明△BCD≌△ACP(SAS),可得结论; (2)①如图2中,延长PM到K,使得MK=PM,连接CK.证明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再证明△PDB≌△PCK(SSS),可得结论; ②结论:PC=2PA.想办法证明∠DPB=30°,可得结论. (1)证明:如图1中,∵△ABC,△CDP都是等边三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP; (2)证明:如图2中,延长PM到K,使得MK=PM,连接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可证△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:结论:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,设∠DPB=∠CPK=x,则∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA. 【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30°角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 上册 期末 综合 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文