分片实验与有限元法.docx
《分片实验与有限元法.docx》由会员分享,可在线阅读,更多相关《分片实验与有限元法.docx(10页珍藏版)》请在咨信网上搜索。
1、分片实验与有限元法摘要本文提出分片试验在有限元法中有着重要的作用,它是近代有限元发展的一个主要特色。得出分片试验对位移函数和应变函数的要求,这些要求便是一个好的有限元法所应保证的;分析了几何方程弱形式与分片试验的关系,借此分析了杂交元、拟协调元如何满足这些要求,以及在满足这些要求的同时产生的对其他条件的影响;分析了精化直接刚度法、广义协调元和双参数法如何保证分片试验的满足;最后作为位移条件的应用例子,改进了BCIZ元。关键词分片试验,弱形式,网线函数,有限元法 1 引言 连续问题极大地推动了有限元的发展,目前,成熟的构造单元的方法有传统的位移法有限元1、应力杂交元、杂交混合元、拟协调元、广义协
2、调元、双参数法、精化直接刚度法等多种。有些方法在数学上已有证明,但这些方法的更为完善的证明仍是一个课题,而且其数学证明还很难被研究力学的人们所理解。人们仍比较普遍以事后的分片试验来验证单元的收敛性。尽管当前仍有对分片试验的讨论,但以往的大量实践说明:通过分片试验的单元使用起来是令人放心的。通过分片试验是绝大多数有限元分析方法的共同点,近期有限元的发展可以说是以分片试验为一个主要内涵的发展。 众所周知,分片试验是与单元间的位移协调性密切相关的。人们在进行有限元分析时,不可避免的涉及了单元间的协调关系,这种协调关系与两个单元有关,文采用了单元边界上的公共的位移插值函数,文把这种位移插值函数成为“网
3、线函数”。正式这种所谓的“网线函数”的采用,单元间的协调问题可以在单元内独立考虑。目前成功解决连续问题的有限元法均有意或无意地使用了这种网线函数。本文通过网线函数给出了分片试验对应变和位移的要求。目前对各种有限元法分析的方法均是在单元一级上采用变分原理,从而得到单元的应变的,由结点位移为参数表达的表达式,再把它们代入最小势能原理得到刚度阵。各种有限元法在得到应变的做法上不同,好的有限元法得到的应变表达式已满足了通过分片实验所应满足的条件。2 分片检验的要求 因有限元法最终列出的是势能的方程,因此分片试验可以看作:在常应变情况下,位移的不协调部分对势能无贡献,在薄板弯曲问题中,可如下表达(1)其
4、中,A:单元域,为位移的不协调部分,有(2) 为位移,为位移的协调部分。 方程(1)可以理解为:在常内力情况下,不协调位移对应变能无贡献。把(2)式代入方程(1)(3)对(3)式中的项应用格林公式,并应用坐标变换公式(4)其中、分别为位移协调部分在单元边界的法向和切向的导数,即为文中的网线函数,、为单元边界外法线的方向余弦。对含的项再分步积分得(5)r表示单元的边数,表示结点的位移参数。对(3)中的含项也进行分步积分并整理有(6)同样,对项再分步积分得(7)ai、bi、ci为由各边的nx与ny组成的参数,表示位移函数在结点处的值。 (4)、(5)、(6)、(7)便是通过分片检验所需满足的方程。
5、 (4)、(5)是从应变的角度反映了分片试验对单元的要求,这里称之为应变约束条件;(6)、(7)是从位移的角度反映了分片试验对单元的要求,这里称之为位移约束条件。成熟的有限元法都自觉或不自觉地应用了这些条件。 传统的位移法构造的协调元自动满足了上述各式,下面对其它有限元分析方法进行分类分析。3 使用应变约束的有限元法方程(4)、(5)是对应变的要求,没有涉及刚体位移,同时应力和应变之间只有一个线性关系,所以,假设应变或应力的有限元法都应满足这两个方程。方程(4)、(5)表达的是应变与位移之间的关系,它们必然与弹性力学的几何方程 拟协调元与杂交混合元便是采用方程(11)对应变或应力进行离散,而应
6、力杂交元采用的是(13)式。不同的是应力杂交元与杂交混合元是由假设应力出发,而拟协调元是由假设应变入手。而应力与应变之间的关系只是一个线性变换,如果应力与应变设在同一空间,仅是设应力与设应变的不同是不会影响最终结果的。从方程(11)与(13)的来源(9)式可以看出,几类单元中的应变只在较弱的意义上满足相容方程。因平衡方程与连续性方程是一对对偶的微分方程组,有限元法中已经使用了平衡方程的弱形式最小势能原理,这里使用了连续性方程的弱形式也许更为合理。可以验证,单元应变满足相容条件的强形式与弱形式对单元的精度一般影响不大。 由以上讨论可见,在有限元分析中选常数作检验函数是保证单元通过分片检验的关键。
7、而这一点在以上提到的三种有限元法中都能自然得到满足。构造三角形单元时,常取面积坐标作为检验函数基,因三个面积坐标之和为1,固在离散每个应变时,检验函数应取遍三个面积坐标,这样便保证了检验函数为常数时式(5)或(6)成立。精化直接刚度法虽然从设位移出发,但又对应变矩阵进行了修正。以下讨论其应变的改进作用。在方程(4)的两边同时除以单元的面积,变为(14)上式表达了单元的平均应变所应满足的方程。可把上式写成如下矩阵形式(15)其中与文中相一致,为结点参数矢量。一般的有限元法得到的应变表达式(16)其单元的平均应变(17)不一定满足式(14),因此把平均应变进行修正,即换成式(18)中表达的所需形式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分片 实验 有限元
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。