2019_2020学年新教材高中数学第三课平面向量初步考点突破素养提升新人教B版必修2.doc
《2019_2020学年新教材高中数学第三课平面向量初步考点突破素养提升新人教B版必修2.doc》由会员分享,可在线阅读,更多相关《2019_2020学年新教材高中数学第三课平面向量初步考点突破素养提升新人教B版必修2.doc(4页珍藏版)》请在咨信网上搜索。
第三课 平面向量初步 考点突破·素养提升 素养一 数学运算 角度 平面向量的坐标运算 【典例1】已知向量=(4,3),=(-3,-1),点A(-1,-2). (1)求线段BD的中点M的坐标. (2)若点P(2,y)满足=λ(λ∈R),求y与λ的值. 【解析】(1)设点B的坐标为(x1,y1). 因为=(4,3),A(-1,-2), 所以(x1+1,y1+2)=(4,3). 所以所以所以B(3,1). 同理可得D(-4,-3). 设线段BD的中点M的坐标为(x2,y2), 则x2==-,y2==-1, 所以M. (2)由已知得=(3,1)-(2,y)=(1,1-y), =(-4,-3)-(3,1)=(-7,-4). 又=λ,所以(1,1-y)=λ(-7,-4), 则所以 【类题·通】 向量的坐标表示实际上是向量的代数表示,是将几何问题代数化的有力工具,它是转化思想、函数与方程、分类讨论、数形结合等思想方法的具体体现.通过向量坐标运算主要解决求向量的坐标、向量的模,判断共线、平行等问题. 素养二 直观想象 角度 用已知向量表示未知向量 【典例2】在平行四边形ABCD中,E和F分别是边CD和BC的中点.若=λ+μ,其中λ,μ∈R,求λ+μ的值. 【解析】选择,作为平面向量的一组基底, 则=+,=+,=+, 又=λ+μ=+, 于是得解得 所以λ+μ=. 【类题·通】 利用已知向量表示未知向量,实质就是利用三角形法则进行向量的加、减、数乘运算;平面向量基本定理的引入为其提供了有力的理论依据,利用平面向量基本定理表示向量时,要选择一组恰当的基底,常与待定系数法、方程思想紧密联系在一起解决问题. 素养三 逻辑推理 角度 平面向量在几何中的应用 【典例3】如图,点L,M,N分别为△ABC的边BC,CA,AB上的点,且=l,=m,=n,若++=0.求证:l=m=n. 【证明】令=a,=b,=c, 则由=l得,=l b; 由=m得,=m c; 由=n得,=n a. 因为++=0, 所以(+)+(+)+(+)=0. 即(a+l b)+(b+m c)+(c+n a)=0, 所以(1+n)a+(1+ l)b+(1+m)c=0. 又因为a+b+c=0,所以a=-b-c, 所以(1+n)(-b-c)+(1+l)b+(1+m)c=0, 即(l-n)b+(m-n)c=0. 因为b与c不共线, 所以l-n=0且m-n=0, 所以l=n且m=n,即l=m=n. 【类题·通】 1.向量的加减运算遵循平行四边形法则或三角形法则,数乘运算和线段平行之间联系密切,因此用向量方法可以解决平面几何中的相关问题. 2.利用平面向量解决几何问题的关键是恰当地引入向量,通过向量运算,解释几何性质. 【加练·固】 如图所示,P是正方形ABCD的对角线BD上一点,四边形PECF是矩形,求证:PA=EF. 【证明】以B为坐标原点,建立如图所示的平面直角坐标系,设正方形的边长为1,||=λ, 则A(0,1),P,E,F, =,=. 因为||2=+=λ2-λ+1, ||2=+=λ2-λ+1, 所以||2=||2,故PA=EF. - 4 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 _2020 学年 新教材 高中数学 第三 平面 向量 初步 考点 突破 素养 提升 新人 必修
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文