分享
分销 收藏 举报 申诉 / 5
播放页_导航下方通栏广告

类型2019_2020学年新教材高中数学第3章函数的概念与性质3.2函数的基本性质3.2.1单调性与最大小值第2课时函数的最大小值课后课时精练新人教A版必修第一册.doc

  • 上传人:二***
  • 文档编号:4494911
  • 上传时间:2024-09-25
  • 格式:DOC
  • 页数:5
  • 大小:2.39MB
  • 下载积分:5 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2019 _2020 学年 新教材 高中数学 函数 概念 性质 3.2 基本 调性 最大 小值第 课时 课后 精练 新人 必修 一册
    资源描述:
    第2课时 函数的最大(小)值 A级:“四基”巩固训练 一、选择题 1.已知函数f(x)=(x∈[2,6]),则函数的最大值为(  ) A.0.4 B.1 C.2 D.2.5 答案 C 解析 ∵函数f(x)=在[2,6]上单调递减,∴f(x)max=f(2)==2. 2.函数f(x)=则f(x)的最大值、最小值分别为(  ) A.10,6 B.10,8 C.8,6 D.以上都不对 答案 A 解析 当1≤x≤2时,8≤2x+6≤10,当-1≤x<1时,6≤x+7<8.∴f(x)min=f(-1)=6,f(x)max=f(2)=10.故选A. 3.已知函数y=x2-2x+3在区间[0,m]上有最大值3,最小值2,则m的取值范围是(  ) A.[1,+∞) B.[0,2] C.(-∞,2] D.[1,2] 答案 D 解析 由y=x2-2x+3=(x-1)2+2知,当x=1时,y的最小值为2,当y=3时,x2-2x+3=3,解得x=0或x=2.由y=x2-2x+3的图象知,当m∈[1,2]时,能保证y的最大值为3,最小值为2. 4.当0≤x≤2时,a<-x2+2x恒成立,则实数a的取值范围是(  ) A.(-∞,1] B.(-∞,0] C.(-∞,0) D.(0,+∞) 答案 C 解析 令f(x)=-x2+2x,则f(x)=-x2+2x=-(x-1)2+1.又∵x∈[0,2],∴f(x)min=f(0)=f(2)=0.∴a<0. 5.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为(  ) A.-1 B.0 C.1 D.2 答案 C 解析 因为f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a,所以函数f(x)图象的对称轴为x=2.又因为函数图象开口向下,所以f(x)在[0,1]上单调递增.又因为f(x)min=-2,所以f(0)=-2,即a=-2.所以f(x)max=f(1)=-1+4-2=1. 二、填空题 6.设函数y=f(x)的定义域为[-4,6],且在区间[-4,-2]上单调递减,在区间[-2,6]上单调递增,且f(-4)<f(6),则函数f(x)的最小值是________,最大值是________. 答案 f(-2) f(6) 解析 函数y=f(x)在[-4,6]上的图象的变化趋势大致如图所示,观察可知f(x)min=f(-2). 又由题意可知f(-4)<f(6),故f(x)max=f(6). 7.函数f(x)=在[1,b](b>1)上的最小值是,则b=________. 答案 4 解析 因为f(x)=在[1,b]上单调递减,所以f(x)在[1,b]上的最小值为f(b)==,所以b=4. 8.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m). 答案 20 解析 设矩形花园的宽为y m, 则=,即y=40-x,矩形花园的面积S=x(40-x)=-x2+40x=-(x-20)2+400,当x=20时,面积最大. 三、解答题 9.求下列函数的最值. (1)函数y=x+(x≥1)的最小值; (2)函数y=的最大值. 解 (1)解法一:令t=,且t≥0,则x=t2+1, 所以原函数变为y=t2+1+t,t≥0. 配方得y=2+, 又因为t≥0,所以y≥+=1. 故函数y=x+的最小值为1. 解法二:因为函数y=x和y=(x≥1)均为增函数,故函数y=x+(x≥1)为增函数,所以当x=1时y取得最小值,即ymin=1. (2)y===2+=2+. 因为2+≥, 所以2<2+≤2+=. 故函数的最大值为. 10.已知函数f(x)=ax+(1-x)(a>0),且f(x)在[0,1]上的最小值为g(a),求g(a)的最大值. 解 f(x)=x+, 当a>1时,a->0,此时f(x)在[0,1]上单调递增, ∴g(a)=f(0)=; 当0<a<1时,a-<0,此时f(x)在[0,1]上单调递减, ∴g(a)=f(1)=a; 当a=1时,f(x)=1,此时g(a)=1. ∴g(a)= ∴g(a)在(0,1)上单调递增,在[1,+∞)上单调递减, 又a=1时,有a==1, ∴当a=1时,g(a)取最大值1. B级:“四能”提升训练 1.已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-. (1)求证:f(x)在R上单调递减; (2)求f(x)在[-3,3]上的最小值. 解 (1)证明:∀x1,x2∈R,且x1<x2, 则x2-x1>0, 因为x>0时,f(x)<0, 所以f(x2-x1)<0. 又因为x2=(x2-x1)+x1, 所以f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1), 所以f(x2)-f(x1)=f(x2-x1)<0, 所以f(x2)<f(x1). 所以f(x)在R上单调递减. (2)由(1)可知f(x)在R上单调递减, 所以f(x)在[-3,3]上也单调递减, 所以f(x)在[-3,3]上的最小值为f(3). 而f(3)=f(1)+f(2)=3f(1)=3×=-2. 所以函数f(x)在[-3,3]上的最小值是-2. 2.某公司生产某种产品投入固定资金20万元,以后生产x万件产品需再投入可变资金a(x2-1)万元,收入为R(x)万元,其中R(x)=160x-3.8x2-1480.2.已知当生产10万件产品时,投入生产资金可达到39.8万元. (1)判断生产每件产品所需可变资金函数的单调性; (2)求计划生产多少件产品时,利润最大?最大利润是多少万元? 解 (1)生产x万件产品所投入资金共有y=20+a(x2-1)万元, 当x=10时,y=39.8,解得a=0.2. 生产每件产品所需可变资金函数为 f(x)=×a=×0.2, 设x1>x2>0,则f(x1)-f(x2)=×0.2-×0.2 =×0.2(x1-x2)-×0.2 =×0.2 =×0.2(x1-x2), 因为x1>x2>0, 所以×0.2(x1-x2)>0, 故生产每件产品所需可变资金函数f(x)=×0.2为单调递增函数. (2)设利润为L(x)万元,则L(x)=R(x)-20-0.2(x2-1)=160x-3.8x2-1480.2-20-0.2(x2-1)=160x-4x2-1500=-4(x-20)2+100,所以当生产20万件产品时利润最大,最大利润为100万元. - 5 -
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2019_2020学年新教材高中数学第3章函数的概念与性质3.2函数的基本性质3.2.1单调性与最大小值第2课时函数的最大小值课后课时精练新人教A版必修第一册.doc
    链接地址:https://www.zixin.com.cn/doc/4494911.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork