2019_2020学年新教材高中数学第5章统计与概率5.4统计与概率的应用课时24统计与概率的应用练习含解析新人教B版必修第二册.doc
《2019_2020学年新教材高中数学第5章统计与概率5.4统计与概率的应用课时24统计与概率的应用练习含解析新人教B版必修第二册.doc》由会员分享,可在线阅读,更多相关《2019_2020学年新教材高中数学第5章统计与概率5.4统计与概率的应用课时24统计与概率的应用练习含解析新人教B版必修第二册.doc(12页珍藏版)》请在咨信网上搜索。
课时24 统计与概率的应用 知识点一 统计在实际中的应用Error! No bookmark name given. 1.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出第一、二、三分厂取出的产品的使用寿命平均值分别为1020小时、980小时、1030小时,估计这个企业所生产的该产品的平均使用寿命为________小时. 答案 50 1015 解析 第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1020×0.5+980×0.2+1030×0.3=1015. 2.甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下: 甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85 现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由. 解 派甲参赛比较合适.理由如下: 甲=×(82+81+79+78+95+88+93+84)=85, 乙=×(92+95+80+75+83+80+90+85)=85, s=×[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5, s=×[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41. 因为甲=乙,s<s,所以甲的成绩较稳定,派甲参赛比较合适. (或派乙参赛比较合适.理由如下:从统计的角度看,甲获得85分以上(含85分)的频率为f1=,乙获得85分以上(含85分)的频率为f2==.因为f2>f1,所以派乙参赛比较合适.) 知识点二 概率在实际中的应用Error! No bookmark name given. 3.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一名学生摸球,另一名学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6000次. (1)估计从袋中任意摸出一个球,恰好是红球的概率是________; (2)请你估计袋中红球接近________个. 答案 (1) (2)15 解析 (1)∵20×400=8000, ∴摸到红球的频率为=, ∵试验次数很大,大量试验时,频率接近于理论概率, ∴估计从袋中任意摸出一个球,恰好是红球的概率是. (2)设袋中红球有x个,根据题意得=,解得x=15,经检验x=15是原方程的解. ∴估计袋中红球接近15个. 4.已知某音响设备由A电视机,B影碟机,C线路,D左声道和E右声道五个部件组成,其中每个部件工作的概率如图所示,当且仅当A与B中有一个工作,C工作,D与E中有一个工作时能听到声音;且若D和E同时工作则有立体声效果. (1)求能听到立体声效果的概率; (2)求听不到声音的概率. 解 (1)能听到立体声效果的概率P1=[1-(1-0.9)×(1-0.95)]×0.95×0.94×0.94=0.8352229. (2)能听到声音的概率P2=[1-(1-0.9)×(1-0.95)]×0.95×[1-(1-0.94)2]=0.9418471, 从而所求概率为1-P2=1-0.9418471=0.0581529. 5.如图所示,有两个可以自由转动的均匀转盘A,B.转盘A被平均分成三份,分别标上1,2,3三个数字;转盘B被平均分成四份,分别标上3,4,5,6四个数字.有人为甲、乙两人设计了一个游戏规则:自由转动转盘A与B,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜;否则乙获胜.你认为这个游戏规则公平吗?如果公平,请说明理由;如果不公平,怎样修改规则才能使游戏对双方都公平? 解 列表如下: BA 3 4 5 6 1 4 5 6 7 2 5 6 7 8 3 6 7 8 9 由表可知,等可能的结果有12种,和为6的结果只有3种. 因为P(和为6)==,即甲、乙获胜的概率不相等, 所以这个游戏规则不公平. 规则改为:自由转动转盘A与B,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和小于等于6,那么甲获胜;否则乙获胜.此时游戏对双方都公平. 知识点三 统计与概率的综合应用Error! No bookmark name given. 6.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下: (1)求该校男生的人数; (2)估计该校学生身高在170~185 cm之间的概率; (3)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm之间的概率. 解 (1)样本中男生人数为2+5+14+13+4+2=40,由分层抽样比例为10%知全校男生人数为=400. (2)由统计图知,样本中身高在170~185 cm之间的学生有14+13+4+3+1=35(人),样本容量为70, 所以样本中学生身高在170~185 cm之间的频率f==0.5. 故由f估计该校学生身高在170~185 cm之间的概率是0.5. (3)样本中身高在180~185 cm之间的男生有4人,设其编号为①②③④;样本中身高在185~190 cm之间的男生有2人,设其编号为⑤⑥. 从上述6人中任选2人的树状图如图所示. 故从样本中身高在180~190 cm之间的男生中任选2人的所有可能结果数为15,且每种可能性相等,至少有1人身高在185~190 cm之间的可能结果数为9,因此所求的概率是=. 易错点 不能将实际问题转化为统计与概率问题求解致误Error! No bookmark name given. 7.在调查运动员服用兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面向上,就回答第一个问题,否则回答第二个问题. 由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题. 如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,试估计这群人中服用过兴奋剂的百分率. 易错分析 本题的易错之处是不能准确地将“80个‘是’”“一分为二”,得不出“5个回答‘是’的人服用过兴奋剂”这一结论,从而无法求解. 正解 因为掷硬币出现正面向上的概率为,我们期望大约有150人回答第一个问题,又身份证号码的尾数是奇数或偶数是等可能的.在回答第一个问题的150人中大约有一半人,即75人回答了“是”,其中5个回答“是”的人服用过兴奋剂,因此我们估计这群人中大约有3.33%的人服用过兴奋剂. 一、选择题 1.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是和,且两人是否进球相互没有影响.现甲、乙各投篮一次,恰有一人进球的概率是( ) A. B. C. D. 答案 D 解析 有甲进球乙不进球、甲不进球乙进球两种情况,概率为P=×+×=. 2.某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6位对户外运动持“喜欢”态度,有1位对户外运动持“不喜欢”态度,有3位对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有( ) A.36人 B.30人 C.24人 D.18人 答案 A 解析 设持“喜欢”“不喜欢”“一般”态度的人数分别为6x,x,3x,由题意得3x-x=12,x=6,所以持“喜欢”态度的有6x=36人. 3.在如图所示的一组数据的茎叶图中,有一个数字被污染后模糊不清,但曾计算得该组数据的极差与25%分位数之和为56,则被污染的数字为( ) A.2 B.3 C.4 D.5 答案 D 解析 由图可知,该组数据的极差为48-20=28,则该组数据的25%分位数为56-28=28,该组数据有12个,12×25%=3,设被污染的数字为x,则=28,得x=5.故选D. 4.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时抛出自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为( ) A. B. C. D. 答案 C 解析 假设有甲、乙、丙、丁、戊五个人按顺序围成一桌,五个人同时抛出自己的硬币,基本事件总数为2×2×2×2×2=32.若五个人都坐着,有1种情况;若四个人坐着,一个人站着,有5种情况;若三个人坐着,不相邻的两个人站着,有甲丙、甲丁、乙丁、乙戊、丙戊5种情况,故没有相邻的两个人站起来所包含的基本事件共有1+5+5=11个,故所求的概率为.选C. 5.某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( ) A.该校初三学生1分钟仰卧起坐的次数的中位数为25 B.该校初三学生1分钟仰卧起坐的次数的众数为24 C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80 D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8 答案 C 解析 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误;第三组数据所在的矩形最高,第三组数据的中间值为27.5.∴众数为27.5,故B错误;1分钟仰卧起坐的次数超过30的频率为0.2,∴超过30次的人数为400×0.2=80,故C正确;1分钟仰卧起坐的次数少于20的频率为0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C. 6.有三个游戏规则如下,袋子中分别装有形状、大小相同的球,从袋中无放回地取球. 游戏1 游戏2 游戏3 袋中装有3个黑球和2个白球 袋中装有2个黑球和2个白球 袋中装有3个黑球和1个白球 从袋中取出2个球 从袋中取出2个球 从袋中取出2个球 若取出的两个球同色,则甲胜 若取出的两个球同色,则甲胜 若取出的两个球同色,则甲胜 若取出的两个球不同色,则乙胜 若取出的两个球不同色,则乙胜 若取出的两个球不同色,则乙胜 其中不公平的游戏是( ) A.游戏2 B.游戏3 C.游戏1和游戏2 D.游戏1和游戏3 答案 C 解析 对于游戏1,取出两球同色的概率为,取出两球不同色的概率为,不公平; 对于游戏2,取出两球同色的概率为,取出两球不同色的概率为,不公平; 对于游戏3,取出两球同色即全是黑球,概率为,取出两球不同色的概率为,公平.故选C. 二、填空题 7.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为________,________. 答案 0.97 0.03 解析 断头不超过两次的概率P1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P2=1-P1=1-0.97=0.03. 8.一篇关于“键盘侠”的时评引发了大家对“键盘侠”的热议(“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象).某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9600人,则可估计该地区对“键盘侠”持反对态度的有________人. 答案 6912 解析 在随机抽取的50人中,持反对态度的频率为1-=,所以可估计该地区对“键盘侠”持反对态度的有9600×=6912(人). 9.如图所示,从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数)整理后画出的频率分布直方图如下,从成绩是80分以上(包括80分)的学生中选2人,则他们在同一分数段的概率是________. 答案 解析 记“选出的2人在同一分数段”为事件E,80~90分之间有40×0.1=4人,设为a,b,c,d;90~100分之间有40×0.05=2人,设为A,B.从这6人中选出2人,有(a,b),(a,c),(a,d),(a,A),(a,B),(b,c),(b,d),(b,A),(b,B),(c,d),(c,A),(c,B),(d,A),(d,B),(A,B),共15个基本事件,且这15个基本事件发生的可能性是相等的,其中事件E包括(a,b),(a,c),(a,d)(b,c),(b,d),(c,d),(A,B),共7个基本事件,则P(E)=. 三、解答题 10.为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上记号,不影响其存活,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量. 解 设保护区中天鹅的数量约为n,假定每只天鹅被捕到的可能性是相等的, 从保护区中任捕一只,设事件A={捕到带有记号的天鹅},则P(A)=,① 第二次从保护区中捕出150只天鹅,其中有20只带有记号,由概率的统计定义可知P(A)=,② 由①②两式,得=,解得n=1500, 所以该自然保护区中天鹅的数量约为1500只. 11.一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A={一个家庭中既有男孩又有女孩},B={一个家庭中最多有一个女孩},对下述两种情形,请讨论A与B的独立性. (1)家庭中有两个小孩; (2)家庭中有三个小孩. 解 (1)有两个小孩的家庭,小孩性别的所有可能情况为Ω={(男,男),(男,女),(女,男),(女,女)},样本点个数为4,由等可能性知每个样本点发生的概率均为. 这时A={(男,女),(女,男)},B={(男,男),(男,女),(女,男)},AB={(男,女),(女,男)},于是P(A)=,P(B)=,P(AB)=. 显然P(AB)≠P(A)P(B), 所以事件A,B不相互独立. (2)有三个小孩的家庭,小孩性别的所有可能情况为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},样本点个数为8,由等可能性知每个样本点发生的概率均为. 这时A中含有6个样本点,B中含有4个样本点,AB中含有3个样本点. 于是P(A)==,P(B)==,P(AB)=. 显然P(AB)=P(A)P(B)成立, 所以事件A与B是相互独立的. 12.甲、乙两人在相同条件下各射击10次,每次中靶环数情况如图所示. (1)请填写下表(写出计算过程): 平均数 方差 命中9环及9环以上的次数 甲 乙 (2)从下列三个不同的角度对这次测试结果进行分析: ①从平均数和方差相结合看(分析谁的成绩更稳定); ②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些); ③从折线图上两人射击命中环数的走势看(分析谁更有潜力). 解 由题图,知 甲射击10次中靶环数分别为9,5,7,8,7,6,8,6,7,7. 将它们由小到大排列为5,6,6,7,7,7,7,8,8,9. 乙射击10次中靶环数分别为2,4,6,8,7,7,8,9,9,10. 将它们由小到大排列为2,4,6,7,7,8,8,9,9,10. (1)甲=×(5+6×2+7×4+8×2+9)=7, 乙=×(2+4+6+7×2+8×2+9×2+10)=7, s=×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=×(4+2+0+2+4)=1.2, s=×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2] =×(25+9+1+0+2+8+9)=5.4. 填表如下: 平均数 方差 命中9环及9环以上的次数 甲 7 1.2 1 乙 7 5.4 3 (2)①∵平均数相同,s<s, ∴甲成绩比乙稳定. ②∵平均数相同,命中9环及9环以上的次数甲比乙少, ∴乙成绩比甲好些. ③∵甲成绩在平均数上下波动,而乙处于上升势头,从第三次以后就没有比甲少的情况发生, ∴乙更有潜力. - 12 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 _2020 学年 新教材 高中数学 统计 概率 5.4 应用 课时 24 练习 解析 新人 必修 第二
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2019_2020学年新教材高中数学第5章统计与概率5.4统计与概率的应用课时24统计与概率的应用练习含解析新人教B版必修第二册.doc
链接地址:https://www.zixin.com.cn/doc/4494883.html
链接地址:https://www.zixin.com.cn/doc/4494883.html