2019_2020学年新教材高中数学第十章概率10.2事件的相互独立性应用案巩固提升新人教A版必修第二册.doc
《2019_2020学年新教材高中数学第十章概率10.2事件的相互独立性应用案巩固提升新人教A版必修第二册.doc》由会员分享,可在线阅读,更多相关《2019_2020学年新教材高中数学第十章概率10.2事件的相互独立性应用案巩固提升新人教A版必修第二册.doc(7页珍藏版)》请在咨信网上搜索。
10.2 事件的相互独立性 [A 基础达标] 1.坛子中放有3个白球,2个黑球,从中进行不放回地取球两次,每次取一球,用A1表示第一次取得白球,A2表示第二次取得白球,则A1和A2是( ) A.互斥事件 B.相互独立事件 C.对立事件 D.不相互独立的事件 解析:选D.因为P(A1)=,若A1发生了,P(A2)==;若A1不发生,P(A2)=,所以A1发生的结果对A2发生的结果有影响,所以A1与A2不是相互独立事件. 2.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为( ) A.0.2 B.0.8 C.0.4 D.0.3 解析:选D.由相互独立事件同时发生的概率可知,问题由乙答对的概率为P=0.6×0.5=0.3,故选D. 3.某种开关在电路中闭合的概率为p,现将4只这种开关并联在某电路中(如图所示),若该电路为通路的概率为,则p=( ) A. B. C. D. 解析:选B.因为该电路为通路的概率为,所以该电路为不通路的概率为1-,只有当并联的4只开关同时不闭合时该电路不通路,所以1-=(1-p)4,解得p=或p=(舍去).故选B. 4.(2019·重庆检测)荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A荷叶上,则跳三次之后停在A荷叶上的概率是( ) A. B. C. D. 解析:选A.由已知得逆时针跳一次的概率为,顺时针跳一次的概率为,则逆时针跳三次停在A上的概率为P1=××=,顺时针跳三次停在A上的概率为P2=××=.所以跳三次之后停在A上的概率为P=P1+P2=+=. 5.有一道数学难题,学生A解出的概率为,学生B解出的概率为,学生C解出的概率为.若A,B,C三人独立去解答此题,则恰有一人解出的概率为( ) A.1 B. C. D. 解析:选C.一道数学难题,恰有一人解出,包括: ①A解出,B,C解不出,概率为××=; ②B解出,A,C解不出,概率为××=; ③C解出,A,B解不出,概率为××=. 所以恰有1人解出的概率为++=. 6.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________. 解析:所求概率P=0.8×0.1+0.2×0.9=0.26. 答案:0.26 7.在如图所示的电路图中,开关a,b,c闭合与断开的概率都是,且是相互独立的,则灯亮的概率是________. 解析:设“开关a,b,c闭合”分别为事件A,B,C,则灯亮这一事件为ABC∪AB∪A C,且A,B,C相互独立, ABC,AB,A C相互独立, ABC,AB,A C互斥,所以 P=P(ABC)+P(AB)+P(AC) =P(A)P(B)P(C)+P(A)P(B)P()+P(A)P()P(C) =××+××+××=. 答案: 8.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别为,,,则汽车在这三处因遇红灯或黄灯而停车一次的概率为________. 解析:分别设汽车在甲、乙、丙三处通行的事件为A,B,C, 则P(A)=,P(B)=,P(C)=, 停车一次为事件(BC)∪(AC)∪(AB), 故其概率P=××+××+××=. 答案: 9.某学生语、数、英三科考试成绩在一次考试中排名全班第一的概率为语文为0.9,数学为0.8,英语为0.85,求在一次考试中: (1)三科成绩均未获得第一名的概率是多少? (2)恰有一科成绩未获得第一名的概率是多少? 解:分别记该学生语、数、英考试成绩排名全班第一的事件为A,B,C,则A,B,C两两互相独立, 且P(A)=0.9,P(B)=0.8,P(C)=0.85. (1)“三科成绩均未获得第一名”可以用 表示, P( )=P()P()P() =[1-P(A)][1-P(B)][1-P(C)] =(1-0.9)(1-0.8)(1-0.85) =0.003, 即三科成绩均未获得第一名的概率是0.003. (2)“恰有一科成绩未获得第一名”可以用 (BC)∪(AC)∪(AB)表示. 由于事件BC,AC和AB两两互斥, 根据概率加法公式和相互独立事件的意义,所求的概率为P(BC)+P(AC)+P(AB) =P()P(B)P(C)+P(A)P()P(C)+P(A)P(B)P() =[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)P(B)[1-P(C)] =(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329, 即恰有一科成绩未获得第一名的概率是0.329. 10.某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100 m跑(互不影响)的成绩在13 s内(称为合格)的概率分别为,,,若对这三名短跑运动员的100 m跑的成绩进行一次检测,则 (1)三人都合格的概率; (2)三人都不合格的概率; (3)出现几人合格的概率最大. 解:记“甲、乙、丙三人100 m跑成绩合格”分别为事件A,B,C,显然事件A,B,C相互独立, 则P(A)=,P(B)=,P(C)=. 设恰有k人合格的概率为Pk(k=0,1,2,3), (1)三人都合格的概率为 P3=P(ABC)=P(A)·P(B)·P(C)=××=. (2)三人都不合格的概率为 P0=P()=P()·P()·P()=××=. (3)恰有两人合格的概率为 P2=P(AB)+P(A C)+P(BC) =××+××+××=. 恰有一人合格的概率为 P1=1-P0-P2-P3=1---==. 综合(1)(2)(3)可知P1最大. 所以出现恰有1人合格的概率最大. [B 能力提升] 11.端午节放假,甲回老家过节的概率为,乙、丙回老家过节的概率分别为,.假定三人的行动相互之间没有影响,那么这段时间内至少有1人回老家过节的概率为( ) A. B. C. D. 解析:选B.“甲、乙、丙回老家过节”分别记为事件A,B,C,则P(A)=,P(B)=,P(C)=,所以P()=,P()=,P()=.由题知A,B,C为相互独立事件,所以三人都不回老家过节的概率P()=P()P()P()=××=,所以至少有1人回老家过节的概率P=1-=. 12.如图,已知电路中4个开关闭合的概率都是,且是互相独立的,则灯亮的概率为( ) A. B. C. D. 解析:选C.记“A,B,C,D四个开关闭合”分别为事件A,B,C,D,可用对立事件求解,图中含开关的三条线路同时断开的概率为P()P()[1-P(AB)]=××=.所以灯亮的概率为1-=. 13.事件A,B,C相互独立,如果P(AB)=,P(C)=,P(AB)=,则P(B)=________,P(B)=________. 解析:由题意可得 解得P(A)=,P(B)=,P(C)=, 所以P(B)=P()·P(B)=×=. 答案: 14.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为、、,且三个项目是否成功互相独立. (1)求恰有两个项目成功的概率; (2)求至少有一个项目成功的概率. 解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为 ××(1-)=, 只有农产品加工和水果种植两个项目成功的概率为 ×(1-)×=, 只有绿色蔬菜种植和水果种植两个项目成功的概率为 (1-)××=, 所以恰有两个项目成功的概率为++=. (2)三个项目全部失败的概率为 (1-)×(1-)×(1-)=, 所以至少有一个项目成功的概率为1-=. [C 拓展探索] 15.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.8,计算: (1)两人都击中目标的概率; (2)其中恰有一人击中目标的概率; (3)至少有一人击中目标的概率. 解:记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B.“两人都击中目标”是事件AB;“恰有1人击中目标”是A∪B;“至少有1人击中目标”是AB∪A∪B. (1)“两人各射击一次,都击中目标”就是事件AB,又由于事件A与B相互独立. 所以P(AB)=P(A)·P(B)=0.8×0.8=0.64. (2)“两人各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A),另一种是甲未击中乙击中(即B).根据题意,这两种情况在各射击一次时不可能同时发生,即事件A与B是互斥的,所以所求概率为P=P(A)+P(B)=P(A)·P()×P()·P(B)=0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32. (3)“两人各射击一次,至少有一人击中目标”的概率为P=P(AB)+[P(A)+P(B)]=0.64+0.32=0.96. - 7 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 _2020 学年 新教材 高中数学 第十 概率 10.2 事件 相互 独立性 应用 巩固 提升 新人 必修 第二
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2019_2020学年新教材高中数学第十章概率10.2事件的相互独立性应用案巩固提升新人教A版必修第二册.doc
链接地址:https://www.zixin.com.cn/doc/4494872.html
链接地址:https://www.zixin.com.cn/doc/4494872.html